Journal of Chemical Ecology

, Volume 12, Issue 2, pp 561–579 | Cite as

The haustorium and the chemistry of host recognition in parasitic angiosperms

  • Mayland Chang
  • David G. Lynn
Article

Abstract

Two parasitic angiosperms,Agalinis purpurea (Scrophulariaceae) andStriga asiatica (Scrophulariaceae), are compared as to the chemical recognition events involved in host selection.Agalinis is a hemiparasite which can mature to seed-set without a host, whereasStriga is a holoparasite and survives for only a very limited time without a host. Both parasites, however, attach to a host through a specialized organ known as the haustorium and regulate the development of this organ through the recognition of chemical factors from host plants. We now describe the discovery of 2,6-dimethoxy-p-benzoquinone (2,6-DMBQ) as an haustoria-inducing principle fromSorghum root extracts. Our investigation of this compound has led us to suggest that one level of host recognition in these parasitic plants is mediated through their enzymatic digestion of the host root surface. Degradation of surface components liberates quinonoid compounds, such as 2,6-DMBQ, which in turn trigger haustorial development.

Key words

Agalinis Striga parasitic angiosperms 2,6-dimethoxy-p-benzoquinone haustoria organogenesis laccase phenol oxidase parasite-host recognition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bell, A.A. 1981. Biochemical mechanisms of disease resistance.Annu. Rev. Plant Physiol. 32:21–81.Google Scholar
  2. Bolker, H.I., andKung, F.L. 1969. Formation of 2-6-dimethoxy-1,4-benzoquinone by the action Of nitrous acid on 1,2,3-trimethoxybenzene.J. Chem. Soc. (C), 1969:2298–2304.Google Scholar
  3. Bowie, J.H., Cameron, D.W., Giles, R.G.F., andWilliams, D.H. 1966. Studies in mass spectrometry. Part V. Mass spectra of benzoquinones.J. Chem. Soc. (B), 1966:335–339.Google Scholar
  4. Bungenberg De Jonc, H.L.,Klaar, W.J., andVliegenthart, J.A. 1955. Glycosides and their importance in the wheat germ. 3rd Internationaler Brotkongress, Hamburg, pp. 29–33.Google Scholar
  5. Burgstahler, A.W., andWorden, L.R. 1973. Coumarone, p. 351,in H.E. Baumgarten, (ed.). Organic Syntheses, Collective Volume V. Wiley, New York.Google Scholar
  6. Caldwell, E.S., andSteelink, C. 1969. Phenoxy radical intermediates in the enzymatic degradation of lignin model compounds.Biochim. Biophys. Acta 184:420–431.Google Scholar
  7. Carlson, R.E., andDolphin, D.H. 1981. Chromatographic analysis of isoflavanoid accumulation in stressedPisum sativum.Phytochemistry 20:2281–2284.Google Scholar
  8. Carlson, R.E., andDolphin, D.H. 1982.Pisum sativum stress metabolites: Two cinnamylphenols and a 2′-methoxychalcone.Phytochemistry 21:1733–1736.Google Scholar
  9. Chappel, J.B., andHansford, R.G. 1972. Pages 43–56,in G.D. Birnie, and S.M. Fox (eds.). Subcellular Components, Preparation and Fractionation, 2nd ed. Butterworths, London.Google Scholar
  10. Cook, C.E., Whichard, L.P., Wall, M.E., Egley, G.H., Coggan, P., Luhan, P.A., andMcPhail, A.T. 1972. Germination stimulants. 2. The structures of strigol—a potent seed germination stimulant for witchweed (Striga latea Lour.)J. Am. Chem. Chem. Soc. 94:6198–6199.Google Scholar
  11. Crombie, L., Crombie, W.M.L., andWhiting, D.A. 1984. Isolation of avenacins A-1, A-2, B-1, and B-2 from oat roots: Structures of their aglycones, the avenestergins.J. Chem. Soc. Chem. Commun. 1984:244–248.Google Scholar
  12. Dewick, P.M. 1975. Pterocarpan biosynthesis: 2′-Hydroxy-isoflavone and isoflavone precursors of dimethylhomopterocarpin in red clover.J. Chem. Soc. Chem. Commun. 1975:656–658.Google Scholar
  13. Handa, S.S., Kinghorn, A.D., Cordeu, G.A., andFarnsworth, N.R. 1983. Plant anticancer agents. XXVI. Constituents ofPeddiea fischeri.J. Nat. Prod. 46:248–250.Google Scholar
  14. Harborne, J.B. 1977. Phenolic compounds derived from shikimate, pp. 34–55,in J.D. Bu'Lock (ed.). Biosynthesis, vol. 5. The Chemical Society, London.Google Scholar
  15. Harkin, J.M., andObst, J.R. 1973. Syringaldazine, an effective reagent for detecting laccase and peroxidase in fungi.Experientia 29:381–387.Google Scholar
  16. Haslam, E. 1974. The Shikimate Pathway. Wiley, New York.Google Scholar
  17. Hausen, B.M., Simatupang, M.H., andKingreen, J.C. 1972. Untersuchungen zur Uberempfindlichkeit gegen Sucupira und Palisanderholz.Berufsdermat 20:1–7.Google Scholar
  18. Ishihara, T., andIshihara, M. 1976. Oxidation of syringic acid by fungal laccase.Mokuzai Gakkaishi 22:371–375.Google Scholar
  19. Jones, E., Ekundayo, O., andKingston, D.G.I. 1981. Plant anticancer agents. XI. 2,6-dimethoxybenzoquinone as a cytoxic constituent ofTibouchina pulchra.J. Nat. Prod. 44:493–495.Google Scholar
  20. Kamat, V.S., Graden, D.W., Lynn, D.G., Steffens, J.C., andRiopel, J.L. 1982. A versatile total synthesis of xenognosin.Tetrahedron Lett. 23:1035–1038.Google Scholar
  21. Kodaira, H., Ishikawa, M., Komoda, Y., andNakajima, T. 1983. Isolation and identification of anti-platelet aggregation principles from the bark ofFraxinus japonica Blume.Chem. Pharm. Bull. 31:2262–2268.Google Scholar
  22. Kuijt, J. 1969. The Biology of Parasitic Flowering Plants. University of California Press, Berkeley.Google Scholar
  23. Langenheim, J.H. 1981. Terpenoids in the Leguminosae, pp. 627–655,in R.M. Polhill and P.H. Raven (eds.). Advances in Legume Systematics. Royal Botanical Gardens, England.Google Scholar
  24. Lynn, D.G. 1985. The involvement of allelochemicals in the host selection of parasitic angiosperms, pp. 55–81,in A.C. Thompson (ed.). ACS Symposium Series No. 268, The Chemistry of Allelopathy: Biochemical Interactions Among Plants, American Chemical Society, Washington, D.C.Google Scholar
  25. Lynn, D.G., Steffens, J.C., Kamat, V.S., Graden, D.W., Shabanowitz, J., andRiopel, J.L. 1981. Isolation and characterization of the first host recognition substance for parasitic angiosperms.J. Am. Chem. Soc. 103:1868–1870.Google Scholar
  26. MacQueen, M. 1984. Haustorial initiating activity of several simple phenolic compounds, pp. 118–122,in Proc. Third International Symposium on Parasitic Weeds. Aleppo, Syria, ICARDA.Google Scholar
  27. Matsumoto, M., andKobayashi, H. 1985. Hexacyanoferrate-catalyzed oxidation of trimethoxybenzenes to dimethoxy-P-benzoquinones with hydrogen peroxide.J. Org. Chem. 50:1766–1768.Google Scholar
  28. Morton, R.A. (ed.). 1965. Biochemistry of Quinones. Academic Press, New York.Google Scholar
  29. Murashige, T., andSkÖog, F. 1962. A revised medium for rapid growth with tobacco culture.Physiol. Plant. 15:473–497.Google Scholar
  30. Nickrent, D.C., Musselman, L.J., Riopel, J.L., andEplee, R.E. 1979. Haustorial initiation and non-host penetration in witchweed (Striga asiatica).Ann. Bot. 43:233–236.Google Scholar
  31. Patai, S. (ed.). 1974. The Chemistry of the Quinonoid Compounds, Part 1. Wiley, London.Google Scholar
  32. Redfearn, E.R., andWhittaker, P.A. 1962. The inhibitory effects of quinones on the succinic oxidase system of the respiratory chain.Biochim. Biophys. Acta 56:440–444.Google Scholar
  33. Riopel, J.L. 1979. Experimental studies on induction of haustoria inAgalinis purpurea, pp. 165–173,in Proc. Second International Symposium on Parasitic Weeds. North Carolina State University, Raleigh, North Carolina.Google Scholar
  34. Riopel, J.L., andBaird, V. 1986. Morphogenesis of the early development of primary haustoria inStriga asiatica, in L. Musselman (ed.). The Biology and Control ofStriga. CRC Press, Boca Raton, Florida. In press.Google Scholar
  35. Riopel, J.L., andMusselman, L.J. 1979. Experimental initiation of haustoria inAgalinis purpurea (Scrophulariaceae).Am. J. Bot. 66:570–575.Google Scholar
  36. Schultz, K.H., Garbe, I., Hausen, B.M. andSimptupang, M.H. 1979. The sensitizing capacity of naturally occurring quinones. Experimental studies in Guinea pigs.Arch. Dermatol. Res. 264:275–286.Google Scholar
  37. Steffens, J.C., Lynn, D.G., Kamat, V.S., andRiopel, J.L. 1982. Molecular specificity of haustorial inductionin Agalinis purpurea (L). (Scrophulariaceae).Ann. Bot. 50:1–7.Google Scholar
  38. Steffens, J.C., Roark, J.L., Lynn, D.G., andRiopel, J.L. 1983. Host recognition in parasitic angiosperms: Use of correlation spectroscopy to identify long-range coupling in a haustorial inducer.J. Am. Chem. Soc. 105:1669–1671.Google Scholar
  39. Steffens, J.C.,Lynn, D.G., andRiopel, J.L. 1986. A novel haustorial inducer for the root parasiteAgalinis purpurea Phytochemistry, (in press).Google Scholar
  40. Thomson, R.H. 1971. Naturally Occurring Quinones, 2nd ed. Academic Press, London, page 734.Google Scholar
  41. Umezawa, T., Nakatsubo, F., andHiguchi, T. 1982. Lignin degradation byPhanerochaete chrysosporium: Metabolism of a phenolic phenylcoumaran substrate model compound.Arch. Microbiol. 131:124–128.Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • Mayland Chang
    • 1
  • David G. Lynn
    • 1
  1. 1.Searle Chemistry LaboratoryThe University of ChicagoChicago

Personalised recommendations