Advertisement

Journal of Statistical Physics

, Volume 58, Issue 1–2, pp 185–198 | Cite as

Surface tension from finite-volume vacuum tunneling in the 3D Ising model

  • Hildegard Meyer-Ortmanns
  • Thomas Trappenberg
Articles

Abstract

We measure the surface tensionσ in the broken phase of the 3D Ising model at a temperatureT=0.955T c with two different methods which are taken from quantum field theory in finite volumes. Both methods rely on finite-size effects close to the phase transition. The first one measuresσ from the size dependence of the vacuum tunneling energy, which is determined by the decay of a correlation, givingσ=0.030. The second one extractsσ from the size dependence of the rate of flip events and its corresponding correlation time. It leads toσ=0.027. Both values agree reasonably with other calculations.

Key words

Finite size analysis spectrum calculations field theoretical framework Ising model surface tension 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Jansen, J. Jersák, I. Montvay, G. Münster, T. Trappenberg, and U. Wolff,Phys. Lett. 213B:203 (1988).Google Scholar
  2. 2.
    K. Jansen, I. Montvay, G. Münster, T. Trappenberg, and U. Wolff,Nucl. Phys. B 322:698 (1989).Google Scholar
  3. 3.
    M. Lüscher and P. Weisz,Nucl. Phys. B 290[FS20]:27 (1987).Google Scholar
  4. 4.
    M. Lüscher and P. Weisz,Nucl. Phys. B 295[FS21]:65 (1988).Google Scholar
  5. 5.
    K. K. Mon,Phys. Rev. Lett. 60:2749 (1988).Google Scholar
  6. 6.
    K. Binder,Phys. Rev. A 25:1699 (1982).Google Scholar
  7. 7.
    M. E. Fisher,J. Phys. Soc. Japan (Suppl.)26:87 (1969).Google Scholar
  8. 8.
    E. Brézin and J. Zinn-Justin,Nucl. Phys. B 257[FS14]:867 (1985).Google Scholar
  9. 9.
    G. Münster, DESY 89-011 (February 1989);Nucl. Phys. B, in press.Google Scholar
  10. 10.
    J. C. Niel and J. Zinn-Justin,Nucl. Phys. B 280[FS18]:355 (1986).Google Scholar
  11. 11.
    R. H. Swendsen and J.-S. Wang,Phys. Rev. Lett. 58:86 (1987).Google Scholar
  12. 12.
    T. Trappenberg, Diploma thesis.Google Scholar
  13. 13.
    Z. Alexandrowitz,Physica A, in press.Google Scholar
  14. 14.
    U. Staaden and M. Fähnle, preprint MPI für Metallforschung Stuttgart (1989).Google Scholar
  15. 15.
    M. Lüscher,Commun. Math. Phys. 104:177;105:153 (1986).Google Scholar
  16. 16.
    V. Privman and N. M. Švrakić,J. Stat. Phys. 54:735 (1989).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Hildegard Meyer-Ortmanns
    • 1
    • 2
  • Thomas Trappenberg
    • 1
    • 3
  1. 1.HLRZc/o KFA JülichJülichFederal Republic of Germany
  2. 2.Institut für Theoretische PhysikUniversität ZürichZürichSwitzerland
  3. 3.Institut für Theoretische PhysikRWTH AachenAachenFederal Republic of Germany

Personalised recommendations