Journal of Applied Electrochemistry

, Volume 21, Issue 4, pp 335–345 | Cite as

Characterization of DSA®-type oxygen evolving electrodes: Choice of a coating

  • Ch. Comninellis
  • G. P. Vercesi


In the search for a DSA®-type electrode for oxygen evolution in acidic solutions, nine binary coatings with IrO2, RuO2, Pt as conducting component, and TiO2, ZrO2, Ta2O5 as inert oxides, have been deposited on titanium, examined for their microstructural properties and tested for their electrocatalytic activity and anodic stability. Electrochemical “true” surfaces of the coatings were found to be dependent on structure and morphology: the mixtures that form a solid solution (RuO2−TiO2), or allow limited miscibility (IrO2−TiO2), show the lowest dispersion of active material. Differences in service lives, were attributed to differences in wear mechanism of the electrodes. It was found that Ti/IrO2 (70 mol%)-Ta2O5 (30 mol%) is by far the best electrode.


TiO2 Titanium Solid Solution Acidic Solution Service Life 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. P. Vercesi, J. Rolewicz, Ch. Comninellis, E. Plattner and J. Hinden,Thermochim. Acta, submitted.Google Scholar
  2. [2]
    H. B. Beer, US Appl. 549 194 (1966), US 3 632 498 (1972) and US 3 711 385 (1973).Google Scholar
  3. [3]
    O. De Nora, A. Nidola, G. Trisoglio and G. Bianchi Brit. Pat. 1 399 576 (1973).Google Scholar
  4. [4]
    R. Hutchings, K. Müller, R. Kötz and S. Stucki,J. Mat. Sci. 19 (1984) 3987.Google Scholar
  5. [5]
    R. Kötz and S. Stucki,Electrochim. Acta 31 (1986) 1311.Google Scholar
  6. [6]
    C. Angelinetta, S. Trasatti, Lj. D. Atanasoska, Z. S. Minevski and R. T. Atanasoski,Mater. Chem. Phys. 22 (1989) 499.Google Scholar
  7. [7]
    S. Trasatti, ‘Electrodes of Conductive Metallic Oxides’, Elsevier, Amsterdam (1981).Google Scholar
  8. [8]
    Ch. Comninellis and G. P. Vercesi,J. Appl. Electrochem., submitted.Google Scholar
  9. [9]
    S. Trasatti,Electrochim. Acta 29, (1984) 1503.Google Scholar
  10. [10]
    G.-W. Jang and K. Rajesliwar,J. Electrochem. Soc. 134 (1987) 1830.Google Scholar
  11. [11]
    L. D. Burke and M. McCarthy,Electrochim. Acta 29 (1984) 211.Google Scholar
  12. [12]
    R. S. Yeo, J. Orehotsky, W. Visscher and S. Srinivasan,J. Electrochem. Soc. 128 (1981) 1900.Google Scholar
  13. [13]
    A. De Battisti, G. Lodi, M. Cappadonia, G. Battaglia and R. Kötz,J. Electrochem. Soc. 136 (1989) 2596.Google Scholar
  14. [14]
    T. V. Varlamova, I. D. Belova, R. R. Shrifina, B. Sh. Galyamov, Yu. E. Roginskaya and Yu. N. Venetsev,Zh. Fiz. Khim. 64 (1990) 385.Google Scholar
  15. [15]
    J. Kolb, C. R. Franks and B. A. Schenker, US Pat. 3 793 164.Google Scholar
  16. [16]
    J. Rolewicz, Ch. Comninellis, E. Plattner and J. Hinden,electrochim. Acta 33 (1988) 573.Google Scholar
  17. [17]
    Idem,Chimia 42 (1988) 75.Google Scholar
  18. [18]
    F. Hine, M. Yasuda and Y. Yoshida,J. Electrochem. Soc. 124 (1977) 500.Google Scholar
  19. [19]
    W. A. Gerrard and B. C. H. Steele,J. Appl. Electrochem. 8 (1978) 417.Google Scholar
  20. [20]
    Yu. E. Roginskaya, V. I. Bystrov and D. M. Shub,Zh. Neorg. Khim. 22 (1977) 201.Google Scholar
  21. [21]
    V. M. Lebedev, Yu. E. Roginskaya, N. L. Klimsenko, V. I. Bystrov and Yu. N. Venetsev,ibid.21 (1976) 1380.Google Scholar
  22. [22]
    J. Rolewicz, Doctoral thesis, Swiss Federal Institute of Technology, Dept. of Chem. Ingen., Thesis No. 662 (1987).Google Scholar
  23. [23]
    C. L. McDaniel and S. J. Schneider,J. Res. Nat. Bur. Stand. 71A (1967) 119.Google Scholar
  24. [24]
    Ch. Comninellis, G. P. Vercesi and J. Hinden,Electrochim. Acta, submitted.Google Scholar
  25. [25]
    S. Ardizzone, G. Fregonara and S. Trasatti,Electrochim. Acta 35 (1990) 263.Google Scholar
  26. [26]
    A. M. Feltham and M. Spiro,Chem. Rev. 71 (1971) 177.Google Scholar
  27. [27]
    T. Biegler, D. A. Rand and R. Woods,J. Electroanal. Chem. 29 (1971) 269.Google Scholar
  28. [28]
    R. F. Savinell, R. L. Zeller III and J. A. Adams,J. Electrochem. Soc. 137 (1990) 489.Google Scholar
  29. [29]
    D. V. Kokoulina, T. V. Ivanova, Yu. I. Krasovitskaya, Z. I. Kudrytavtseva and L. I. Krishtalik,Soviet Electrochem. 13 (1977) 1293.Google Scholar
  30. [30]
    L. D. Burke, O. J. Murphy, J. F. O'Neill and S. Venkatesan,J.C.S. Faraday I 73 (1977) 1659.Google Scholar
  31. [31]
    S. Trasatti and G. Buzzanca,J. Electroanal. Chem. 29 (1971) App. 1.Google Scholar
  32. [32]
    D. Galizzoli, F. Tanatardini and S. Trasatti,J. Appl. Electrochem. 5 (1975) 203.Google Scholar
  33. [33]
    T. Arikado, C. Iwakura and H. Tamura,Electrochimica Acta 22 (1977) 513.Google Scholar
  34. [34]
    K. Doblhofer, M. Metikos, Z. Ogumi and H. Gerischer,Ber. Bunsenges. Phys. Chem. 82 (1978) 1046.Google Scholar
  35. [35]
    L. D. Burke and O. J. Murphy,J. Electroanal. Chem. 96 (1979) 19.Google Scholar
  36. [36]
    S. Ardizzone, A. Carugati and S. Trasatti,ibid.126 (1981) 287.Google Scholar
  37. [37]
    S. Trasatti,Electrochim. Metall. 2 (1967) 12.Google Scholar
  38. [38]
    C. Iwakura, M. Inai, M. Manabe and H. Tamura,Denki Kagaku 48 (1980) 91.Google Scholar
  39. [39]
    C. G. Smith and Y. Okinaka,J. Electrochem. Soc. 130 (1983) 2149.Google Scholar
  40. [40]
    D. Stauffer,Phys. Rep. 54 (1979) 1.Google Scholar
  41. [41]
    ‘The Mathematics and Physics of Disordered Media’, Proceedings of a Workshop, Minneapolis, (edited by B. D. Hughes and B. W. Ninham), in ‘Lecture Notes in Mathematics’ (edited by A. Dold and B. Eckmann) vol. 1035, Springer-Verlag, Heidelberg (1983).Google Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • Ch. Comninellis
    • 1
  • G. P. Vercesi
    • 1
  1. 1.Institute of Chemical EngineeringSwiss Federal Institute of TechnologyLausanneSwitzerland

Personalised recommendations