Journal of Chemical Ecology

, Volume 14, Issue 4, pp 1071–1085

Precise characterization of cuticular compounds in youngDrosophila by mass spectrometry

  • J. M. Pechine
  • C. Antony
  • J. -M. Jallon


Cuticular hydrocarbons of youngDrosophila flies are singular with very long chains and complex diene mixtures. A precise characterization of these substances was carried out by epoxidation and analysis of the products by GC-MS with negative chemical ionization. InD. melanogaster, double bonds of dienes are more probable at carbon positions 11 or 13 and 21 or 23. InD. simulans, double bonds are shifted more towards the interior of the chain. Such a difference is also found among monoenes of both species. The analyses of monoenes and dienes confirm the similarity of cuticular compounds of young flies of both sexes in both species. A main cuticular compound ofD. erecta females, 9, 23-tritriacontadiene, is also presented.

Key words

Drosophila melanogaster Drosophila simulans Drosophilidae Diptera aphrodisiac pheromone cuticular hydrocarbon double bonds epoxidation chemical ionization mass spectrometry (Z,Z)-7,11-heptacosadiene alkenes olefins 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antony, C. 1984. Etude des communications chimiques dans le comportement sexuel deDrosophila melanogaster. Thèse de Doctorat d'Etat. Université de Paris VI.Google Scholar
  2. Antony, C., andJallon, J.-M. 1981. Evolution des hydrocarbures comportementalement actifs deDrosophila melanogaster au cours de la maturation sexuelle.C. R. Acad. Sci. Paris 252:239–242.Google Scholar
  3. Antony, C., andJallon, J.-M. 1982. The chemical basis for sex recognition inDrosophila melanogaster.J. Insect Physiol. 28:873–880.Google Scholar
  4. Antony, C., Davis, T.L., Carlson, D.A., Pechiné, J.-M., andJallon, J.-M. 1985. Compared behavioral responses of maleDrosophila melanogaster (Canton S) to natural and synthetic aphrodisiacs.J. Chem. Ecol. 11:1617–1629.Google Scholar
  5. Aplin, R.T., andColes, L. 1967. A simple procedure for localization of ethylenic bond by mass spectrometry.Chem. Commun. 858–859.Google Scholar
  6. Baker, G.L., Vroman, H.E., andPadmore, J. 1963. Hydrocarbons of the American Cockroach.J. Biochem. Biophys. Res. Commun. 13:360–365.Google Scholar
  7. Blomquist, G.J., Howard, R.W., McDaniel, C.A., Remaley, S., Dwyer, L.A., andNelson, D.R. 1980. Application of methoxymercuration-demercuration followed by mass-spectrometry as a convenient microanalytical technique for double bond location in insect derived alkenes.J. Chem. Ecol. 6:257–269.Google Scholar
  8. Blomquist, G.J., Toolson, E.C., andNelson, D.R. 1985. Epicuticular hydrocarbons ofDrosophila pseudoobscura. Identification of unusual alkadiene and alkatriene positional isomers.Insect Biochem. 15:25–34.Google Scholar
  9. Bouchoux, G.,Hoppiliard, Y.,Jaudon, P., andPechiné, J.-M. 1987. Dosage des mélanges d'époxides aliphatiques à l'aide des spectres de masse CI, OH.Spectrosc. Int. J. In press.Google Scholar
  10. Budzikiewics, H., andBusker, E. 1980. Studies in chemical ionization mass spectrometry III CI spectra of olefins.Tetrahedron 36:255–266.Google Scholar
  11. Capella, P. andZorzut, C.M. 1968. Determination of double bond position in monounsaturated fatty acid esters by mass spectrometry of their trimethylsilyloxy derivatives.Anal. Chem. 40:1458–1462.Google Scholar
  12. Cook, R., andCook, A. 1975. The attractiveness to males of femaleDrosophila melanogaster: Effects of mating, age and diet.Anim. Behav. 23:521–526.Google Scholar
  13. Doolittle, R.E., Tumlinson, J.H., andProveaux, A. 1985. Determination of double bond position in conjugated dienes by chemical ionization mass spectrometry with isobutane.Anal. Chem. 57:1625–1630.Google Scholar
  14. Dunkelblum, E., Tan, S.H., andSilk, P.J. 1985. Double-bond location in monounsaturated fatty acids by dimethyl disulfide derivatization and mass spectrometry.J. Chem. Ecol. 11:265–277.Google Scholar
  15. Einhorn, J., Vierlizier, H., Gemal, A.L. andTabet, J.C. 1985. Direct determination of double bond position in long chain conjugated dienes byt-C4H9+ chemical ionization mass spectrometry.Tetrahedron Lett. 26:1445–1448.Google Scholar
  16. Jackson, L.L., andBartelt, R.J. 1986. Cuticular hydrocarbons of Drosophila virilis. Comparison by age and sex.Insect Biochem. 16:433–440.Google Scholar
  17. Jallon, J.-M. 1984. A few chemical words exchanged byDrosophila during courtship.Behav. Genet. 14:441–478.Google Scholar
  18. Jallon, J.-M., andDavid, J. 1987. Variations in cuticular hydrocarbons among the 8 species of theDrosophila melanogaster subgroup.Evolution 41:294–302.Google Scholar
  19. Jallon, J.-M., andHotta, Y. 1979. Genetic and behavioral studies of female sex-appeal inDrosophila.Behav. Genet. 8:487–502.Google Scholar
  20. Pechiné, J.-M., Perez, F., Antony, C., andJallon, J.-M. 1985. A further characterization ofDrosophila cuticular monoenes using a mass spectrometry method to localize double bonds in complex mixtures.Anal. Biochem. 145:177–182.Google Scholar
  21. Suzuki, M., Ariga, T., Sekine, M., Araki, E., andMiyatake, T. 1981. Identification of double bond positions in polyunsaturated fatty acids by chemical ionization mass spectrometry.Anal. Chem. 53:985–988.Google Scholar
  22. Tompkins, L., Hall, J.C., andHall, L. 1980. Courtship stimulating volatile compounds from normal and mutantDrosophila.J. Insect. Physiol. 26:689–697.Google Scholar
  23. Tumlinson, J.H., Heath, R.R., andDoolittle, R.E. 1974. Application of chemical ionization mass spectrometry of epoxides to the determination of olefin position in aliphatic chains.Anal. Chem. 46:1309–1312.Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • J. M. Pechine
    • 1
  • C. Antony
    • 2
  • J. -M. Jallon
    • 2
  1. 1.Laboratoire de Chimie Structurale OrganiqueUniversité de Paris-SudOrsayFrance
  2. 2.Laboratoire de Biologie et Génétique Evolutives du C.N.R.S.Gif-sur-YvetteFrance

Personalised recommendations