Advertisement

Theoretical and Mathematical Physics

, Volume 88, Issue 2, pp 849–858 | Cite as

Invariant states for time dynamics of one-dimensional lattice quantum fermi systems

  • N. E. Ratanov
  • Yu. M. Sukhov
Article
  • 40 Downloads

Keywords

Time Dynamic Invariant State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    O. E. Lanford and D. W. Robinson, Commun. Math. Phys.,24, 193 (1972).Google Scholar
  2. 2.
    R. L. Dobrushin and Yu. M. Sukhov, in: Reviews of Science and Technology. Modern Problems of Mathematics, Vol. 14 [in Russian], VINITI, Moscow (1979), pp. 147–254; C. Boldrighini, R. L. Dobrushin, and Yu. M. Sukhov, “Time asymptotics for some degenerate models of evolution for systems with infinitely many particles,” Preprint, Camerino University, Italy (1980).Google Scholar
  3. 3.
    C. Boldrighini, P. Pellegrinotti, and L. Triolo, J. Stat. Phys.,30, 123 (1983).Google Scholar
  4. 4.
    Yu. M. Sukhov, Izv. Akad. Nauk SSSR, Ser. Mat.,48, 155 (1984).Google Scholar
  5. 5.
    V. A. Chulaevskii, Funktsional. Analiz. i Ego Prilozhen.,17, 53 (1983).Google Scholar
  6. 6.
    H. Araki and E. Barouch, J. Stat. Phys.,31, 327 (1983).Google Scholar
  7. 7.
    D. D. Botvich and V. A. Malyshev, Commun. Math. Phys.,91, 301 (1983).Google Scholar
  8. 8.
    Yu. M. Sukhov and A. G. Shukhov, Teor. Mat. Fiz.,73, 125 (1987).Google Scholar
  9. 9.
    R. Haag, D. Kastler, and E. B. Trych-Pohlmeyer, Commun. Math. Phys.,38, 173 (1974).Google Scholar
  10. 10.
    R. Haag and E. B. Trych-Pohlmeyer, Commun. Math. Phys.,56, 213 (1977).Google Scholar
  11. 11.
    G. Gallavotti and M. Pulvirenti, Commun. Math. Phys.,46, 1 (1976).Google Scholar
  12. 12.
    B. M. Gurevich and Yu. M. Suhov, Commun. Math. Phys.,49, 63 (1976);54, 81 (1977);56, 225 (1977);84, 333 (1982).Google Scholar
  13. 13.
    O. G. Martirosyan, Teor. Mat. Fiz.,76, 261 (1988).Google Scholar
  14. 14.
    B. M. Gurevich, Tr. MMO,52, 175 (1989).Google Scholar
  15. 15.
    V. V. Anshelevich and M. Sh. Gol'dshtein, in: Reviews of Science, and Technology. Modern Problems of Mathematics, Latest Achievements, Vol. 27 [in Russian], VINITI, Moscow (1985), pp. 191–228.Google Scholar
  16. 16.
    O. Bratteli, and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics, Vol. 1, Springer-Verlag, New York (1979).Google Scholar
  17. 17.
    O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics, Vol. 2, Springer-Verlag, New York (1981).Google Scholar
  18. 18.
    B. M. Gurevich, Ya. G. Sinai, and Yu. M. Sukhov, Usp. Mat. Nauk,28, 45 (1973).Google Scholar
  19. 19.
    M. Sirugue and M. Winnink, Commun. Math. Phys.,19, 161, (1970).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • N. E. Ratanov
  • Yu. M. Sukhov

There are no affiliations available

Personalised recommendations