Theoretical and Mathematical Physics

, Volume 48, Issue 2, pp 715–721 | Cite as

Covariant generalization of Noether's theorems for fields with spin

  • B. A. Levitskii
  • Yu. A. Yappa


Covariant Generalization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    E. Noether, “Invariante Variationsprobleme,” Nachr. v. d. Königl. Gesellsch. d Wissensch. zu Göttingen, Math.-Phys., K1,2, 235 (1918).Google Scholar
  2. 2.
    N. N. Bogolyubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields, Interscience (1959).Google Scholar
  3. 3.
    N. P. Konopleva and V. N. Popov, Gauge Fields [in Russian], Atomizdat, Mosdow (1972).Google Scholar
  4. 4.
    B. F. Plybon, “New approach to the Noether theorems,” J. Math. Phys.,12, 57 (1971).Google Scholar
  5. 5.
    V. Fock and D. Ivanenko, “Géometrie quantique linéaire et deplacement paralléle,” C. R. Acad. Sci.,188, 1470 (1929).Google Scholar
  6. 6.
    V. Fock, “The Dirac wave equation and Riemannian geometry,” ZhRFKhO, Chast' Fiz.,62, No. 2, 133 (1930).Google Scholar
  7. 7.
    A. Lichnerowicz, “Champ de Dirac, champ du neutrino et transformations C, P, T sur un espace-temps courve,” Ann. Inst. Henri Poincaré,1A, 233 (1964).Google Scholar
  8. 8.
    N. A. Chernikov and N. S. Shavokhina, “Quantization of a spinor field in a spherical world,” Teor. Mat. Fiz.,16, 77 (1973).Google Scholar
  9. 9.
    V. I. Rodichev, The Theory of Gravitation in an Orthogonal Frame [in Russian], Nauka, Moscow (1974).Google Scholar
  10. 10.
    V. E. Stepanov and Yu. A. Yappa, “Lie derivative of geometrical entities,” Vestn. Leningr. Univ. Fiz. Khim., No. 22, 42 (1978).Google Scholar
  11. 11.
    N. A. Chernikov and E. A. Tagirov, “Quantum theory of scalar field in the de Sitter space-time,” Ann. Inst. Henri Poincaré,9A, 109 (1968).Google Scholar
  12. 12.
    B. A. Levitskii, “Symmetrization of the energy-momentum tensor of a spinor field in Riemannian space-time,” Izv. Vyssh. Uchebn. Zaved. Fiz., No.7, 152 (1977).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • B. A. Levitskii
  • Yu. A. Yappa

There are no affiliations available

Personalised recommendations