Theoretical and Mathematical Physics

, Volume 60, Issue 2, pp 743–765 | Cite as

Superanalysis. II. Integral calculus

  • V. S. Vladimirov
  • I. V. Volovich


Integral Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. S. Vladimirov and I. V. Volovich, Teor. Mat. Fiz.,59, 3 (1984).Google Scholar
  2. 2.
    G. Scheffers, Der. Verhandl. Sächsisch. Acad. Wiss. Leipzig, Math. Phys. K.,45, 828 (1893);46, 120 (1894).Google Scholar
  3. 3.
    P. W. Ketchum, Trans. Am. Math. Soc.,30, 641 (1928).Google Scholar
  4. 4.
    E. R. Lorch, Trans. Am. Math. Soc.,54, 414 (1943).Google Scholar
  5. 5.
    E. K. Blum, Trans. Am. Math. Soc.,78, 343 (1955).Google Scholar
  6. 6.
    P. T. Matthews and A. Salam, Nuovo Cimento,2, 120 (1955).Google Scholar
  7. 7.
    S. F. Edwards, Proc. R. Soc. London, Ser. A,232, 371 (1955).Google Scholar
  8. 8.
    Yu. V. Novozhilov and A. V. Tulub, Usp. Fiz. Nauk,61, 53 (1957).Google Scholar
  9. 9.
    D. J. Candlin, Nuovo Cimento,4(10), 231 (1959).Google Scholar
  10. 10.
    J. L. Martin, Proc. R. Soc. London,251, 543 (1959).Google Scholar
  11. 11.
    F. A. Berezin, The Method of Second Quantization, New York (1966); Introduction to Algebra and Analysis with Anticommuting Variables [in Russian], State University, Moscow (1980).Google Scholar
  12. 12.
    É. J. Cartan, Differential Calculus. Differential Forms [Russian translation], Mir, Moscow (1971).Google Scholar
  13. 13.
    L. Schwartz, Analysis, Vols. 1 and 2 [Russian translation], Mir, Moscow (1972).Google Scholar
  14. 14.
    B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry [in Russian], Nauka, Moscow (1979).Google Scholar
  15. 15.
    V. S. Vladimirov, Methods of the Theory of Functions of Many Complex Variables, M. I. T. Press, Cambr., Mass. (1966).Google Scholar
  16. 16.
    V. S. Vladimirov, Generalized Functions in Mathematical Physics [in Russian], Nauka, Moscow (1979).Google Scholar
  17. 17.
    P. Van Nieuwenhuizen, Phys. Rep.,68, 189 (1981).Google Scholar
  18. 18.
    V. F. Pakhomov, Mat. Zametki,16, 1 (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • V. S. Vladimirov
  • I. V. Volovich

There are no affiliations available

Personalised recommendations