Advertisement

Theoretical and Mathematical Physics

, Volume 90, Issue 1, pp 55–61 | Cite as

Semiclassically concentrated quantum states

  • V. G. Bagrov
  • V. V. Belov
  • A. M. Rogova
Article

Abstract

A semiclassically concentrated state in quantum mechanics is defined. For the example of a one-dimensional Schrödinger equation, a theorem is proved which shows that the condition of semiclassical concentration can be realized only on the solutions of the corresponding classical system of Hamilton equations.

Keywords

Quantum Mechanic Quantum State Classical System Concentrate State Hamilton Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Schrödinger,Naturwissenschaften,14, 664 (1926).Google Scholar
  2. 2.
    P. Eherenfest,Z. Phys.,45, 455 (1927).Google Scholar
  3. 3.
    I. A. Malkin and V. I. Man'ko,Dynamical Symmetries and Coherent States of Quantum Systems [in Russian], Nauka, Moscow (1979).Google Scholar
  4. 4.
    Squeezed and Correlated States of Quantum Systems. Tr. Fiz. Inst. Akad. Nauk SSSR, Vol. 200 [in Russian], Nauka, Moscow (1991).Google Scholar
  5. 5.
    V. M. Babich and Yu. P. Danilov,Zap. Nauchn. Sem. LOMI,15, 47 (1969).Google Scholar
  6. 6.
    E. J. Heller,J. Chem. Phys.,32, 1544 (1975).Google Scholar
  7. 7.
    G. A. Hagedorn,Commun. Math. Phys.,71, 77 (1980).Google Scholar
  8. 8.
    V. V. Belov and O. Yu. Gorchinskaya, “Exact Green's function of relativistic equations of quantum mechanics in the field of a plane wave,” Paper Deposited at VINITI, No. 3026-76 [in Russian], VINITI, Moscow (1976).Google Scholar
  9. 9.
    V. P. Maslov,Perturbation Theory and Asymptotic Methods [in Russian], Moscow State University, Moscow (1965).Google Scholar
  10. 10.
    V. P. Maslov,Asymptotic Methods of Solution of Pseudodifferential Equations [in Russian], Nauka, Moscow (1987).Google Scholar
  11. 11.
    V. G. Bagrov, V. V. Belov, and I. M. Ternov,Teor. Mat. Fiz.,50, 390 (1982).Google Scholar
  12. 12.
    V. G. Bagrov and V. V. Belov,Izv. Vyssh. Uchebn. Zaved. Fiz.,25, No. 4, 48 (1982).Google Scholar
  13. 13.
    V. G. Bagrov, V. V. Belov, and I. M. Ternov,J. Math. Phys.,24, 2855 (1983).Google Scholar
  14. 14.
    V. V. Belov and V. P. Maslov,Dokl. Akad. Nauk SSSR,305, 574 (1989).Google Scholar
  15. 15.
    I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series, and Products, Academic Press, New York (1965).Google Scholar
  16. 16.
    V. G. Bagrov, V. V. Belov, and A. Yu. Trifonov, “Higher approximations for semiclassical trajectory-coherent states of the Schrödinger and Dirac operators in an arbitrary electromagnetic field,” Preprint No. 5 [in Russian], Tomsk Scientific Center, Siberian Branch of the USSR Academy of Sciences, Tomsk (1989).Google Scholar
  17. 17.
    A. M. Rogova,Izv. Vyssh. Uchebn. Zaved. Fiz.,34, No. 7, 77 (1991).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • V. G. Bagrov
  • V. V. Belov
  • A. M. Rogova

There are no affiliations available

Personalised recommendations