Journal of Chemical Ecology

, Volume 14, Issue 3, pp 917–928 | Cite as

Iridoid glycosides as oviposition stimulants for the buckeye butterfly,Junonia coenia (Nymphalidae)

  • Patricia C. Pereyra1
  • M. Deane Bowers


Females ofJunonia coenia (Nymphalidae), a specialist on plants that contain iridoid glycosides, were found to use aucubin and catalpol, iridoid glycosides typical of a host plant,Plantago lanceolata (Plantaginaceae), as oviposition cues. Incorporating dried ground leaf material or pure iridoid glycosides into agar disks proved to be a very effective method of testing. In no-choice tests and choice tests, females laid more eggs on disks withP. lanceolata leaf material or iridoid glycosides, compared to agar controls. There was variation among individual females in preference for disks withP. lanceolata leaf material versus disks with iridoid glycosides. Females given a choice of three different concentrations of iridoid glycoside (0.2, 0.5, 1.0%) in the agar disks and a control laid more eggs on the disk with the highest concentration of iridoid glycoside.

Key words

Iridoid glycoside Junonia coenia Lepidoptera Nymphalidae catalpol aucubin oviposition Plantago lanceolata insect-plant interaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bobbitt, J.M., andSegebarth, D.P. 1969. Iridoid glycosides and similar substances, pp. 1–145,in W.I. Taylor and A.R. Battersby (eds.). Cyclopentanoid Terpene Derivatives. Marcel Dekker, New York.Google Scholar
  2. Bowers, M.D. 1981. Unpalatability as a defense strategy of western checkerspot butterflies (Euphydryas).Evolution 35:367–375.Google Scholar
  3. Bowers, M.D. 1983. The role of iridoid glycosides in hostplant specificity of checkerspot butterflies.J. Chem. Ecol. 9:475–493.Google Scholar
  4. Bowers, M.D. 1984. Iridoid glycosides and host-plant specificity in larvae of the buckeye butterfly,Junonia coenia (Nymphalidae).J. Chem. Ecol. 10:1567–1577.Google Scholar
  5. Bowers, M.D., andPuttick, G.M. 1986. Fate of ingested iridoid glycosides in lepidopteran herbivores.J. Chem. Ecol. 12:169–178.Google Scholar
  6. Brower, L.P. 1984. Chemical defense in butterflies, pp. 109–134,in R.I. Vane-Wright and P.R. Ackery (eds.). The Biology of Butterflies. Academic Press, London.Google Scholar
  7. Calvert, W.H. 1974. The external morphology of foretarsal receptors involved with host discrimination by the nymphalid butterfly,Chlosyne lacinia.Ann. Entomol. Soc. Am. 67:853–856.Google Scholar
  8. Calvert, W.H., andHanson, F. 1983. The role of sensory structures and preoviposition behavior in oviposition by the patch butterfly,Chlosyne lacinia.Entomol. Exp. Appl. 33:179–187.Google Scholar
  9. Chew, F.S. 1977. Coevolution of pierid butterflies and their cruciferous foodplants. II. The distribution of eggs on potential foodplants.Evolution 31:568–579.Google Scholar
  10. Chew, F.S., andRobbins, R. 1984. Egg-laying in butterflies, pp. 65–79,in R.I. Vane-Wright and P.R. Ackery (eds.). The Biology of Butterflies. Academic Press, London.Google Scholar
  11. Conover, W.J. 1980. Practical Nonparametric Statistics. John Wiley & Sons, New York.Google Scholar
  12. David, W.A.L., andGardner, B.O.C. 1962. Oviposition and the hatching of the eggs ofPieris brassicae (L.) in a laboratory culture.Bull. Entomol. Res. 53:91–109.Google Scholar
  13. Dethier, V.G. 1959. Egg-laying habits of Lepidoptera in relation to available food.Can. Entomol. 91:554–561.Google Scholar
  14. Dethier, V.G. 1982. Mechanisms of host-plant recognition.Entomol. Exp. Appl. 31:49–56.Google Scholar
  15. Duff, R., Bacon, J., Mundie, C., Farmer, V., Russell, J., andForrester, A. 1965. Catalpol and methylcatalpol: Naturally occurring glycosides inPlantago andBuddleia species.Biochem. J. 96:1–5.Google Scholar
  16. El-Naggar, L.J., andBeal, J.L. 1980. Iridoids: A review.J. Nat. Prod. 43:649–707.Google Scholar
  17. Feeny, P., Rosenberry, L., andCarter, M. 1983. Chemical aspects of oviposition behavior in butterflies, pp. 27–76,in S. Ahmad (ed.). Herbivorous Insects: Host-Seeking Behavior and Mechanisms. Academic Press, New York.Google Scholar
  18. Fox, R. 1966. Forelegs of butterflies I. Introduction: Chemoreception.J. Res. Lepid. 3:159–172.Google Scholar
  19. Harris, G.H., Jing, W., andStermitz, F.S. 1986. Iridoids and alkaloids fromCastilleja (Scro-phulariaceae) host plants forPlatyptilia pica and rhexifoline content ofP.pica. Biochem. Syst. Ecol. 14:499–506.Google Scholar
  20. Honda, K. 1986. Flavanone glycosides as oviposition stimulants in a papilionid butterfly,Papilio protenor.J. Chem. Ecol. 12:1999–2010.Google Scholar
  21. Hovanitz, W., andChang, V. 1964. Adult oviposition responses inPieris rapae.J. Res. Lepid. 3:159–172.Google Scholar
  22. Ichinose, T., andHonda, H. 1978. Ovipositional behavior ofPapilio protenor demetrius Cramer and the factors involved in its host plants.Appl. Entomol. Zool. 13:103–114.Google Scholar
  23. Ilse, D. 1937. New observations on responses to colours in egg-laying butterflies.Nature 140:544.Google Scholar
  24. Jensen, S., Nielsen, B., andDahlgren, R. 1975. Iridoid compounds, their occurrence and systematic importance in the angiosperms.Bot. Not. 128:148–180.Google Scholar
  25. Nishida, R. 1977. Oviposition stimulants of some papilionid butterflies contained in their host plants.Botyu-Kagaku 42:133–140.Google Scholar
  26. Ohsugi, T., Nishida, R., andFukami, H. 1985. Oviposition stimulant ofPapilio xuthus, aCitrus- feeding swallowtail butterfly.Agric. Biol. Chem. 49:1897–1900.Google Scholar
  27. Papaj, D.R., andRausher, M.D. 1983. Individual variation in host location by phytophagous insects, pp. 77– A. Ahmad (ed.). Herbivorous Insects: Host-Seeking Behaviour and Mechanisms. Academic Press, New York.Google Scholar
  28. Renwick, J.J.A. 1985. Comparative mechanisms of host selection by insects attacking pine trees and crucifers. Presentation at American Institute of Biological Sciences symposium on Chemistry and Coevolution, Gainesville, Florida.Google Scholar
  29. Saxena, K.N., andGoyal, S. 1978. Host-plant relations of the citrus butterflyPapilio demoleus L.: Orientational and ovipositional responses.Entomol. Exp. Appl. 24:1–10.Google Scholar
  30. Schoonhoven, L. 1972. Secondary plant substances and insects.Recent Adv. Phytochem. 5:197–224.Google Scholar
  31. Scott, J. 1975. Movement ofPrecis coenia, a “pseudoterritorial” submigrant (Lepidoptera: Nymphalidae).J. Anim. Ecol. 44:843–850.Google Scholar
  32. Shapiro, A.M. 1974. Butterflies of the Suisun Marsh, California.J. Res. Lepid. 13:191–206.Google Scholar
  33. Singer, M.C. 1971. Evolution of food-plant preference in the butterflyEuphydryas editha.Evolution 25:383–389.Google Scholar
  34. Singer, M.C. 1982. Quantification of host specificity by manipulation of Oviposition behavior in the butterflyEuphydryas editha.Oecologia 52:224–229.Google Scholar
  35. Singer, M. 1983. Determinants of multiple host use by a phytophagous insect population.Evolution 37:389–403.Google Scholar
  36. Sokal, R.R., andRohlf, F.J. 1969. Biometry. Freeman, San Francisco.Google Scholar
  37. Stanton, M.L. 1979. The role of chemotactile stimuli in the Oviposition preference ofColias butterflies.Oecologia 39:79–91.Google Scholar
  38. Stanton, M.L., andCook, R.E. 1984. Sources of intraspecific variation in the hostplant seeking behavior ofColias butterflies.Oecologia 61:265–270.Google Scholar
  39. Stermitz, P.S., Gardner, D.R., Odendaal, F.J., andEhrlich, P.R. 1986.Euphydryas anicia utilization of iridoid glycosides fromCastilleja andBesseya (Scrophulariaceae) hostplants.J. Chem. Ecol. 12:1459–1468.Google Scholar
  40. Tabashnik, B.E., Wheelock, H., Rainbolt, H.D., andWatt, W.B. 1981. Individual variation in Oviposition preference in the butterfly,Colias eurytheme.Oecologia 50:225–230.Google Scholar
  41. Wiklund, C. 1974. Oviposition preferences inPapilio machaon in relation to the hostplants of the larvae.Entomol. Exp. Appl. 17:189–198.Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • Patricia C. Pereyra1
    • 1
  • M. Deane Bowers
    • 1
  1. 1.Museum of Comparative ZoologyHarvard UniversityCambridge

Personalised recommendations