Theoretical and Mathematical Physics

, Volume 57, Issue 2, pp 1110–1117 | Cite as

Explicit solutions of O(3) and O(2, 1) chiral models and the associated equations of the two-dimensional Toda chain and the Ernst equation when the solutions are parametrized by arbitrary functions

  • M. G. Tseitlin


Arbitrary Function Explicit Solution Chiral Model Toda Chain Ernst Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    M. G. Tseitlin, Zap. Nauchn. Semin. LOMI,101, 194 (1981); A. A. Bytsenko and M. G. Zeitlin, Phys. Lett. A,88, 275 (1982); A. A. Bytsenko and M. G. Tseitlin, Teor. Mat. Fiz.,52, 63 (1982).Google Scholar
  2. 2.
    A. N. Leznov and M. V. Saceliev, Commun. Math. Phys.,74, 111 (1980).Google Scholar
  3. 3.
    J. Eells and L. Lemaire, Bull. London Math. Soc.,10, 1 (1978).Google Scholar
  4. 4.
    D. Gross, Nucl. Phys. B,132, 439 (1978).Google Scholar
  5. 5.
    G. Ghika and M. Visinescu, Z. Phys. C.11, 353 (1982).Google Scholar
  6. 6.
    R. B. Abbott, Z. Phys. C,15, 51 (1982).Google Scholar
  7. 7.
    A. A. Belavin and A. M. Polyakov, Pis'ma Zh. Eksp. Teor. Fiz.,22, 503 (1975).Google Scholar
  8. 8.
    D. Maison, Phys. Rev. Lett.,41, 521 (1978).Google Scholar
  9. 9.
    N. Papanicolaou, J. Math. Phys.,20, 2069 (1979).Google Scholar
  10. 10.
    F. J. Chinea, Phys. Rev. D,24, 1053 (1981); F. J. Chinea and F. Guil, J. Phys. A,15, 2349 (1982).Google Scholar
  11. 11.
    J. L. Richard and A. Rouet, Nucl. Phys. B,211, 447 (1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • M. G. Tseitlin

There are no affiliations available

Personalised recommendations