Theoretical and Mathematical Physics

, Volume 83, Issue 3, pp 623–632 | Cite as

Quantum mechanics over non-Archimedean number fields

  • A. Yu. Khrennikov


Quantum Mechanic Number Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    V. S. Vladimirov and I. V. Volovich, Teor. Mat. Fiz.,59, 3 (1984).Google Scholar
  2. 2.
    I. V. Volovich, “Number theory as ultimate physical theory,” Preprint TH, 4881/81, CERN, Geneva (1987).Google Scholar
  3. 3.
    V. S. Vladimirov and I. V. Volovich, Dokl. Akad. Nauk SSSR,302, 320 (1988).Google Scholar
  4. 4.
    V. S. Vladimirov and I. V. Volovich, “p-adic quantum mechanics,” Preprint SMI-01/88, SMI, Moscow (1988); “p-adic Schrödinger type equation,” Preprint NBI-HE-88-77, Copenhagen (1988); I. V. Volovich, Lett. Math. Phys.,16, 61 (1988); P. G. O. Freund and M. Olson, Phys. Lett. B,199, 186 (1987); B. Grossman, Phys. Lett. B,197, 101 (1987); P. G. O. Freund and E. Witten, Phys. Lett. B,199, 191 (1987); I. L. Gervais, Phys. Lett. B,201, 306 (1988).Google Scholar
  5. 5.
    I. Ya. Aref'eva, I. V. Volovich, and B. G. Dragovic, “Open and closed p-adic strings and quadratic extensions of number fields,” Preprint CERN-TH-5076/88, CERN, Geneva (1988).Google Scholar
  6. 6.
    Z. I. Borevich and I. R. Shafarevich, The Theory of Numbers [in Russian], Nauka, Moscow (1985).Google Scholar
  7. 7.
    I. M. Gel'fand, M. I. Graev, and I. I. Pyatetskii-Shapiro, Theory of Representations and Automorphic Functions [in Russian], Nauka, Moscow (1966); F. Bruhat, Bull. Soc. Math. France,89, 43 (1961); V. S. Vladimirov, Usp. Mat. Nauk,43, 17 (1988).Google Scholar
  8. 8.
    I. Fresnel and B. De Mathan, Soc. Math. France Ast., No. 24/25, 139 (1975); Sem. Theor. Numbers, No. 26, 1 (1975–1976): C. F. Woodcock, J. London Math. Soc.,7, 681 (1974);20, 101 (1979); G. F. Borm, p-Adic Fourier Theory, Nijmegen (1988); G. F. Borm, Catholic Univ. Nijmegen Rep. No. 8628 (1986).Google Scholar
  9. 9.
    A. Yu. Khrennikov, “Quantization on non-Archimedean superspaces,” in: Abstracts of Papers at the Seminar School: Topical Problems of Complex Analysis [in Russian], Tashkent State University (1989), pp. 154–155.Google Scholar
  10. 10.
    V. S. Vladimirov, Generalized Functions in Mathematical Physics [in Russian], Nauka, Moscow (1979).Google Scholar
  11. 11.
    A. A. Slavnov and L. D. Faddeev, Gauge Fields, Introduction to Quantum Theory (Frontiers in Physics, Vol. 50), Reading, Mass. (1980); V. N. Popov, Functional Integrals in Quantum Field Theory and Statistical Physics [in Russian], Atomizdat, Moscow (1976).Google Scholar
  12. 12.
    A. Yu. Khrennikov, Izv. Akad. Nauk SSSR, Ser. Mat.,51, 46 (1987); Teor. Mat. Fiz.,66, 339 (1986); Mat. Zametki,37, 735 (1985); Tr. MMO,49, 113 (1986); Dokl. Akad. Nauk SSSR,267, 1313 (1982); Sib. Mat. Zh.,29, No. 4, 180 (1988); Differents. Uravneniya,21, 346 (1985);22, 1596 (1986).Google Scholar
  13. 13.
    A. F. Monna, Analyse Non-Archimedienne, Berlin (1970).Google Scholar
  14. 14.
    V. S. Vladimirov and I. V. Volovich, Dokl. Akad. Nauk SSSR,276, 521 (1984);273, 26 (1983); Teor. Mat. Fiz.,60, 169 (1984); B. S. DeWitt, Supermanifolds, Cambridge University Press (1984); A. Rogers, J. Math. Phys.,21, 724 (1980);22, 939 (1981).Google Scholar
  15. 15.
    A. Yu. Khrennikov, Usp. Mat. Nauk,43, 87 (1988).Google Scholar
  16. 16.
    A. Yu. Khrennikov, Teor. Mat. Fiz.,73, 420 (1988);80, 226 (1989); Differents. Uravneniya,24, 2144 (1988);25, 505 (1989); Mat. Sbornik,180, 763 (1989); Izv. Akad. Nauk SSSR, Ser. Mat.,54, 576 (1990).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • A. Yu. Khrennikov

There are no affiliations available

Personalised recommendations