Journal of Statistical Physics

, Volume 62, Issue 3–4, pp 651–708

Some results on the behavior and estimation of the fractal dimensions of distributions on attractors

  • C. D. Cutler


The strong interest in recent years in analyzing chaotic dynamical systems according to their asymptotic behavior has led to various definitions of fractal dimension and corresponding methods of statistical estimation. In this paper we first provide a rigorous mathematical framework for the study of dimension, focusing on pointwise dimensionσ(x) and the generalized Renyi dimensionsD(q), and give a rigorous proof of inequalities first derived by Grassberger and Procaccia and Hentschel and Procaccia. We then specialize to the problem of statistical estimation of the correlation dimension ν and information dimensionσ. It has been recognized for some time that the error estimates accompanying the usual procedures (which generally involve least squares methods and nearest neighbor calculations) grossly underestimate the true statistical error involved. In least squares analyses of ν andσ we identify sources of error not previously discussed in the literature and address the problem of obtaining accurate error estimates. We then develop an estimation procedure forσ which corrects for an important bias term (the local measure density) and provides confidence intervals forσ. The general applicability of this method is illustrated with various numerical examples.

Key words

Information dimension correlation dimension fractal dimension fractal measures dynamical systems attractors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Badii and A. Politi, Statistical description of chaotic attractors: The dimension function,J. Stat. Phys. 40:725–750 (1985).Google Scholar
  2. 2.
    M. F. Barnsley and S. Demko, Iterated function systems and the global construction of fractals,Proc. R. Soc. Land. A 399:243–275 (1985).Google Scholar
  3. 3.
    C. Beck, Upper and lower bounds on the Renyi dimensions and the uniformity of multifractals,Physica D 41:67–78 (1990).Google Scholar
  4. 4.
    R. Benzi, G. Paladin, G. Parisi, and A. Vulpiani, On the multifractal nature of fully developed turbulence and chaotic systems,J. Phys. A: Math. Gen. 17:3521–3531 (1984).Google Scholar
  5. 5.
    P. J. Bickel and L. Breiman, Sums of functions of nearest neighbor distances, moment bounds, limit theorems, and a goodness-of-fit test,Ann. Prob. 11:185–214 (1983).Google Scholar
  6. 6.
    P. Billingsley, Hausdorff dimension in probability theory,Illinois J. Math. 4:187–209 (1960).Google Scholar
  7. 7.
    P. Billingsley, Hausdorff dimension in probability theory II,Illinois J. Math. 5:291–298 (1961).Google Scholar
  8. 8.
    P. Billingsley,Ergodic Theory and Information (Krieger, New York, 1978).Google Scholar
  9. 9.
    J. R. Blum, H. Chernoff, M. Rosenblatt, and H. Teicher, Central limit theorems for interchangeable processes,Can. J. Math. 10:222–229 (1958).Google Scholar
  10. 10.
    R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows,Invent. Math. 29:181–202 (1975).Google Scholar
  11. 11.
    R. Cawley and R. D. Mauldin, Multifractal decompositions of Moran fractals, Preprint (1990).Google Scholar
  12. 12.
    Y. S. Chow and H. Teicher,Probability Theory: Independence, Interchangeability, Martingales, 2nd ed. (Springer-Verlag, New York, 1988).Google Scholar
  13. 13.
    P. Collet. J. L. Lebowitz, and A. Porzio, The dimension spectrum of some dynamical systems,J. Stut. Phys. 47:609–644 (1987).Google Scholar
  14. 14.
    C. D. Cutler, The Hausdorff dimension distribution of finite measures in Euclidean space,Can. J. Math. 38:1459–1484 (1986).Google Scholar
  15. 15.
    C. D. Cutler, Connecting ergodicity and dimension in dynamical systems,Ergodic Theory Dynam. Syst. 10:451–462 (1990).Google Scholar
  16. 16.
    C. D. Cutler,kth nearest neighbors and the generalized logistic distribution, inThe Logistic Distribution, N. Balakrishnan, ed. (Marcel Dekker, New York, 1991).Google Scholar
  17. 17.
    C. D. Cutler, A dynamical system with integer information dimension and fractal correlation exponent,Commun. Math. Phys. 129:621–629 (1990).Google Scholar
  18. 18.
    C. D. Cutler, Measure disintegrations with respect toσ-stable monotone indices and the pointwise representation of packing dimension, Preprint (1990).Google Scholar
  19. 19.
    C. D. Cutler and D. A. Dawson, Estimation of dimension for spatially-distributed data and related limit theorems,J. Multivariate Anal. 28:115–148 (1989).Google Scholar
  20. 20.
    C. D. Cutler and D. A. Dawson, Nearest neighbor analysis of a family of fractal distributions,Ann. Prob. 18:256–271 (1990).Google Scholar
  21. 21.
    M. Denker and G. Keller, Rigorous statistical procedures for data from dynamical systems,J. Stat. Phys. 44:67–93 (1986).Google Scholar
  22. 22.
    B. Dubuc, J. F. Quiniou, C. Roques-Carmes, C. Tricot, and S. W. Zucker, Evaluating the fractal dimension of profiles,Phys. Rev. A 39:1500–1512 (1989).Google Scholar
  23. 23.
    J.-P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors,Rev. Mod. Phys. 57:617–656 (1985).Google Scholar
  24. 24.
    J. H. Elton, An ergodic theorem for iterated maps,Ergodic Theory Dynam. Syst. 7:481–488 (1987).Google Scholar
  25. 25.
    C. Essex, Correlation dimension and data sample size, Preprint (1987).Google Scholar
  26. 26.
    C. Essex, T. Lookman, and M. A. H. Nerenberg, The climate attractor over short time scales,Nature 326:64–66 (1987).Google Scholar
  27. 27.
    K. J. Falconer,The Geometry of Fractal Sets (Cambridge University Press, Cambridge, 1985).Google Scholar
  28. 28.
    J. D. Farmer, E. Ott, and J. A. Yorke, The dimension of chaotic attractors,Physica D 7:153–180 (1983).Google Scholar
  29. 29.
    P. Grassberger, Are there really climate attractors?,Nature 322:609–612 (1986).Google Scholar
  30. 30.
    P. Grassberger and I. Procaccia, Characterization of strange attractors,Phys, Rev. Lett. 50:346–349 (1983).Google Scholar
  31. 31.
    P. Grassberger and I. Procaccia, Measuring the strangeness of strange attractors,Physica D 9:189–208 (1983).Google Scholar
  32. 32.
    P. Grassberger, R. Badii, and A. Politi, Scaling laws for invariant measures on hyperbolic and nonhyperbolic attractors,J. Stat. Phys. 51:135–178 (1988).Google Scholar
  33. 33.
    H. S. Greenside, A. Wolf, J. Swift, and T. Pignataro, Impracticality of a box-counting algorithm for calculating the dimensionality of strange attractors,Phys. Rev. A 25:3453–3456 (1982).Google Scholar
  34. 34.
    J. Guckenheimer, Dimension estimates for attractors,Contemp. Math. 28:357–367 (1984).Google Scholar
  35. 35.
    T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. I. Shraiman, Fractal measures and their singularities: The characterization of strange sets,Phys. Rev. A 33:1141–1151 (1986).Google Scholar
  36. 36.
    M. Hénon, A two-dimensional mapping with a strange attractor,Commun. Math. Phys. 50:69–77 (1976).Google Scholar
  37. 37.
    H. G. E. Hentschel and I. Procaccia, The infinite number of generalized dimensions of fractals and strange attractors,Physica D 8:435–444 (1983).Google Scholar
  38. 38.
    J. Holzfuss and G. Mayer-Kress, An approach to error estimation in the application of dimension algorithms, inDimensions and Entropies in Chaotic Systems: Quantification of Complex Behavior, G. Mayer-Kress, ed. (Springer-Verlag, New York, 1986).Google Scholar
  39. 39.
    F. Ledrappier and M. Misiurewicz, Dimension of invariant measures for maps with exponent zero,Ergodic Theory Dynam. Syst. 5:595–610 (1985).Google Scholar
  40. 40.
    G. Mayer-Kress, ed.,Dimensions and Entropies in Chaotic Systems: Quantification of Complex Behavior (Springer-Verlag, New York, 1986).Google Scholar
  41. 41.
    R. H. Myers,Classical and Modern Regression with Applications (Duxbury Press, Boston, 1986).Google Scholar
  42. 42.
    C. Nicolis and G. Nicolis, Is there a climatic attractor?,Nature 311:529–532 (1984).Google Scholar
  43. 43.
    E. Ott, W. D. Withers, and J. A. Yorke, Is the dimension of chaotic attractors invariant under coordinate changes?,J. Stat. Phys. 36:687–697 (1984).Google Scholar
  44. 44.
    N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw, Geometry from a time series,Phys. Rev. Lett. 45:712–716 (1980).Google Scholar
  45. 45.
    G. Paladin and S. Vaienti, Hausdorff dimensions in two-dimensional maps and thermodynamic formalism,J. Stat. Phys. 57:289–299 (1989).Google Scholar
  46. 46.
    G. Paladin and A. Vulpiani, Anomalous scaling laws in multifractal objects,Phys. Rep. 156:147–225 (1987).Google Scholar
  47. 47.
    J. Pickands III, Moment convergence of sample extremes,Ann. Math. Stat. 39:881–889 (1968).Google Scholar
  48. 48.
    J. B. Ramsey and H.-J. Yuan, The statistical properties of dimension calculations using small data sets,Nonlinearity 3:155–176 (1990).Google Scholar
  49. 49.
    D. A. Rand, The singularity spectrumf(α) for cookie-cutters,Ergodic Theory Dynam. Syst. 9:527–541 (1989).Google Scholar
  50. 50.
    C. A. Rogers,Hausdorff Measures (Cambridge University Press, Cambridge, 1970).Google Scholar
  51. 51.
    W. Rudin,Real and Complex Analysis, 2nd ed. (McGraw-Hill, New York, 1974).Google Scholar
  52. 52.
    X. Saint Raymond and C. Tricot, Packing regularity of sets inn-space,Math. Proc. Camb. Phil. Soc. 103:133–145 (1988).Google Scholar
  53. 53.
    F. Takens, Detecting strange attractors in turbulence, inLecture Notes in Mathematics, 898 (Springer-Verlag, Berlin, 1981), pp. 366–381.Google Scholar
  54. 54.
    F. Takens, On the numerical determination of the dimension of an attractor, inLecture Notes in Mathematics, 1125 (Springer-Verlag, Berlin, 1985), pp. 99–106.Google Scholar
  55. 55.
    S. J. Taylor, The measure theory of random fractals,Math. Proc. Camb. Phil. Soc. 100:383–406 (1986).Google Scholar
  56. 56.
    C. C. Taylor and S. J. Taylor, Estimating the dimension of a fractal,J. R. Stat. Soc., to appear.Google Scholar
  57. 57.
    S. J. Taylor and C. Tricot, Packing measure, and its evaluation for a Brownian path,Trans. Am. Math. Soc. 288:679–699 (1985).Google Scholar
  58. 58.
    S. J. Taylor and C. Tricot, The packing measure of rectifiable subsets of the plane.Math. Proc. Camb. Phil. Soc. 99:285–296 (1986).Google Scholar
  59. 59.
    Y. Termonia and Z. Alexandrowicz, Fractional dimension of strange attractors from radius versus size of arbitrary clusters,Phys. Rev. Lett. 51:1265–1268 (1983).Google Scholar
  60. 60.
    C. Tricot, Rarefaction indices,Mathematika 27:46–57 (1980).Google Scholar
  61. 61.
    C. Tricot, Two definitions of fractional dimension,Math. Proc. Camb. Phil. Soc. 91:57–74 (1982).Google Scholar
  62. 62.
    C. Tricot, J. F. Quiniou, D. Wehbi, C. Roques-Carmes, and B. Dubuc, Evaluation de la dimension fractale d'un graphe, Preprint (1987).Google Scholar
  63. 63.
    L.-S. Young, Dimension, entropy, and Lyapunov exponents,Ergodic Theory Dynam. Syst. 2:109–124 (1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • C. D. Cutler
    • 1
  1. 1.Department of Statistics and Actuarial ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations