Advertisement

Theoretical and Mathematical Physics

, Volume 64, Issue 2, pp 866–871 | Cite as

Manifolds of constant negative curvature as vacuum solutions in Kaluza-Klein and superstring theories

  • I. Ya. Aref'eva
  • I. V. Volovich
Article

Keywords

Manifold Negative Curvature Vacuum Solution Constant Negative Curvature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    T. Kaluza, Sitzungsber. Preuss. Akad. Wiss., Phys.-Math. Kl.,1, 966 (1921); O. Klein, Z. Phys.,37, 895 (1926).Google Scholar
  2. 2.
    B. DeWitt, in: Relativity, Groups and Topology, Gordon and Breach, New York (1964); B. Cremmer and G. Scherk, Nucl. Phys. B,103, 393 (1976); E. Witten, Nucl. Phys. B,186, 412 (1981); A. Salam and J. Strathdee, Ann. Phys. (N.Y.), No. 2, 316 (1982); M. J. Duff and C. N. Pope, in: Supergravity '82 (eds. S. Ferrara and J. G. Taylor), P. van Nieuwenhuizen World Scientific Publishing (1983); P. Candelas and S. Weinberg, Nucl. Phys. B,237, 397 (1984); M. Gell-Mann and B. Zwiebach, Phys. Lett. B,141, 333 (1984); A. Salam, “Kaluza-Klein proposal and electro-nuclear gravity,” Preprint IC/84/170, Trieste (1984).Google Scholar
  3. 3.
    J. H. Schwarz, Phys. Rep.,89, 223 (1982); L. Brink, “Superstrings,” Preprint TH4006, CERN (1984); M. B. Green, Surveys in High Energy Physics,3, 127 (1983).Google Scholar
  4. 4.
    C. R. Lichnerovich, Acad. Sci. Paris, Ser. A-B,257, 7 (1963).Google Scholar
  5. 5.
    M. B. Green and J. H. Schwarz, Phys. Lett. B,149, 117 (1984).Google Scholar
  6. 6.
    E. Witten, Phys. Lett. B,149, 351 (1984).Google Scholar
  7. 7.
    P. Candelas, G. T. Horowitz, A. Strominger, and E. Witten, “Vacuum configurations for superstrings,” Preprint, Princeton University (1984).Google Scholar
  8. 8.
    P. G. O. Freud and M. A. Rubin, Phys. Lett. B,97, 233 (1980).Google Scholar
  9. 9.
    W. P. Thurston, Bull. Am. Math. Soc.,6, 357 (1982); J. Milnor, Bull. Am. Math. Soc.,6, 9 (1982); V. S. Makarov, in: Problems of Geometry, Vol. 15 (Itogi nauki i tekhniki, VINITI Akad. Nauk SSSR) [in Russian], VINITI, Moscow (1983), pp. 3–59); É. B. Vinberg, Usp. Mat. Nauk,40, 29 (1985).Google Scholar
  10. 10.
    M. F. Atiyah, V. K. Patodi, and I. M. Singer, Math. Proc. Cambridge Philos. Soc.,77, 43 (1975).Google Scholar
  11. 11.
    V. S. Vladimirov, Mat. Sb.,93, 3 (1974).Google Scholar
  12. 12.
    M. J. Duff, B. E. W. Nelsson, and C. N. Pope, Phys. Lett. B,129, 39 (1983).Google Scholar
  13. 13.
    A. N. Tyurin, Tr. Misk. Inst. Akad. Nauk SSSR,168, 98 (1984).Google Scholar
  14. 14.
    J. A. Wolf, Spaces of Constant Curvature, McGraw-Hill, New York (1967).Google Scholar
  15. 15.
    D. V. Volkov and V. I. Tkach, Teor. Mat. Fiz.,51, 171 (1982).Google Scholar
  16. 16.
    S. Randjbar-Daemi and R. Percacci, Phys. Lett. B,117, 41 (1983).Google Scholar
  17. 17.
    E. Cremmer, B. Julia, and J. Scherk, Phys. Lett.,76, 409 (1978).Google Scholar
  18. 18.
    K. Yano and S. Bochner, Curvature and Betti Numbers, Princeton (1953).Google Scholar
  19. 19.
    G. F. Chapline and N. S. Manton, Phys. Lett. B,120, 105 (1983).Google Scholar
  20. 20.
    G. D. Mostow, Ann. Math. Studies,78 (1973).Google Scholar
  21. 21.
    G. A. Margulis, Dokl. Akad. Nauk SSSR,11, 722 (1970).Google Scholar
  22. 22.
    M. B. Voloshin, I. Yu. Kobzarev, and L. B. Okun', Yad. Fiz.,20, 1229 (1974).Google Scholar
  23. 23.
    A. D. Sakharov, Zh. Eksp. Teor. Fiz.,87, 375 (1984).Google Scholar
  24. 24.
    J. Scherk, in: Recent Developments in Gravitation (eds. M. Levy and S. Deser), Plenum Press, New York (1979); C. Wetterich, Nucl. Phys. B,211, 177 (1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • I. Ya. Aref'eva
  • I. V. Volovich

There are no affiliations available

Personalised recommendations