Advertisement

Theoretical and Mathematical Physics

, Volume 89, Issue 3, pp 1239–1248 | Cite as

Lie-algebraic approach to nonlocal symmetries of integrable systems

  • V. É. Adler
Article

Keywords

Integrable System Nonlocal Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    S. P. Burtsev, V. E. Zakharov, and A. V. Mikhailov, Teor. Mat. Fiz.,70, 323 (1987).Google Scholar
  2. 2.
    V. A. Belinskii and V. E. Zakharov, Zh. Eksp. Teor. Fiz.,75, 1953 (1978).Google Scholar
  3. 3.
    F. Calogero and A. Degasperis, Lett. Nuovo Cimento,22, 138 (1978).Google Scholar
  4. 4.
    N. Kh. Ibragimov and A. B. Shabat, Dokl. Akad. Nauk SSSR,244, 56 (1979).Google Scholar
  5. 5.
    A. Yu. Orlov and E. I. Shul'man, “Additional symmetries of integrable systems and representations of the conformal algebra,” Preprint No. 217 [in Russian], Institute of Automation and Electronics, Novosibirsk (1984).Google Scholar
  6. 6.
    A. Yu. Orlov and E. I. Shul'man, Teor. Mat. Fiz.,64, 323 (1985).Google Scholar
  7. 7.
    A. Yu. Orlov and E. I. Shul'man, “Additional symmetries of two-dimensional integrable systems,” Preprint No. 277 [in Russian], Institute of Automation and Electronics, Novosibirsk (1985).Google Scholar
  8. 8.
    A. Yu. Orlov and E. I. Schulman, Lett. Math. Phys.,12, 171 (1986).Google Scholar
  9. 9.
    A. G. Reiman, M. A. Semenov-Tyan-Shanskii, and I. B. Frenkel', Dokl. Akad. Nauk SSSR,247, 802 (1979).Google Scholar
  10. 10.
    A. G. Reiman, Zap. Nauchn. Semin. LOMI,95, 3 (1980).Google Scholar
  11. 11.
    P. P. Kulish and A. G. Reiman, Zap. Nauchn. Semin. LOMI,123, 67 (1983).Google Scholar
  12. 12.
    A. G. Reiman, Zap. Nauchn. Semin. LOMI,131, 118 (1983).Google Scholar
  13. 13.
    M. Adler, Invent. Math.,50, 219 (1979).Google Scholar
  14. 14.
    B. Kostant, London Math. Soc. Lect. Notes Ser.,34, 287 (1979).Google Scholar
  15. 15.
    L. A. Takhtadzhyan and L. D. Faddeev, The Hamiltonian Approach in the Theory of Solitons [in Russian], Nauka, Moscow (1986).Google Scholar
  16. 16.
    A. C. Newell, Solitons in Mathematics, Society for Industrial and Applied Mathematics in the United States (1985).Google Scholar
  17. 17.
    M. Gotto and F. Grosshan, Semisimple Lie Algebras (Lecture Notes, Vol. 38), Dekker (1978).Google Scholar
  18. 18.
    A. V. Mikhailov, M. A. Olshanetsky, and A. M. Perelomov, Commun. Math. Phys.,79, 473 (1981).Google Scholar
  19. 19.
    S. I. Svinolupov and V. V. Sokolov, Mat. Zam.,48, 91 (1990).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • V. É. Adler

There are no affiliations available

Personalised recommendations