Theoretical and Mathematical Physics

, Volume 78, Issue 3, pp 244–252 | Cite as

Asymptotics at t→∞ of the solution to the Cauchy problem for the Korteweg-de Vries equation in the class of potentials with finite-gap behavior as x→±∞

  • R. F. Bikbaev
  • R. A. Sharipov


Cauchy Problem Vries Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    V. E. Zakharov and S. V. Manakov, Zh. Eksp Teor. Fiz.,71, 203 (1976).Google Scholar
  2. 2.
    A. B. Shabat, Dokl. Akad. Nauk SSSR,211, 1310 (1973).Google Scholar
  3. 3.
    M. Ablowitz and H. Segur, Studies in Appl. Math., Vol. 57 (1977), p. 13.Google Scholar
  4. 4.
    V. Yu. Novokshenov, Dokl. Akad. Nauk SSSR,251, 799 (1980).Google Scholar
  5. 5.
    V. S. Buslaev and V. V. Sukhanov, Zap. Nauchn. Seminarov LOMI,120, 32 (1982).Google Scholar
  6. 6.
    A. R. Its, Dokl. Akad. Nauk SSSR,261, 14 (1981).Google Scholar
  7. 7.
    E. A. Kuznetsov and A. V. Mikhailov, Zh. Eksp. Teor. Fiz.,67, 1717 (1974).Google Scholar
  8. 8.
    E. Ya. Khruslov, Mat. Sb.,99(141), No. 2, 261 (1976).Google Scholar
  9. 9.
    V. P. Kotlyarov and E. Ya. Khruslov, Teor. Mat. Fiz.,68, 135 (1986).Google Scholar
  10. 10.
    A. R. Its and A. F. Ustinov, Dokl. Akad. Nauk SSSR,291, 91 (1986).Google Scholar
  11. 11.
    S. P. Novikov (ed.), The Theory of Solitons [in Russian], Nauka, Moscow (1980).Google Scholar
  12. 12.
    L. A. Takhtadzhyan and L. D. Faddeev, Hamiltonian Approach in the Theory of Solitons [in Russian], Nauka, Moscow (1986).Google Scholar
  13. 13.
    B. A. Dubrovin, Usp. Mat. Nauk,36, 11 (1981).Google Scholar
  14. 14.
    Yu. L. Rodin, Physica (Utrecht) D,24, 1 (1987).Google Scholar
  15. 15.
    I. M. Krichever, Funktsional. Analiz i Ego Prilozhen.,9, 77 (1975).Google Scholar
  16. 16.
    R. A. Sharipov, Usp. Mat. Nauk,41, 203 (1986).Google Scholar
  17. 17.
    J. Fay, Theta Functions on Riemann Surfaces (Lecture Notes in Math., Vol. 352), Springer-Verlag (1973).Google Scholar
  18. 18.
    D. Kaup, SIAM J. Appl. Math.,31, 121 (1976).Google Scholar
  19. 19.
    A. Érdelyi et al. (eds), Higher Transcendental Functions (California Institute of Technology H. Bateman M. S. Project), 3 vols., McGraw-Hill, New York (1953, 1955).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • R. F. Bikbaev
  • R. A. Sharipov

There are no affiliations available

Personalised recommendations