Theoretical and Mathematical Physics

, Volume 73, Issue 2, pp 1149–1151 | Cite as

Derivation of anomalous commutator in the functional integral formalism

  • A. Yu. Alekseev
  • Ya. Madaichik
  • L. D. Faddeev
  • S. L. Shatashvili


Integral Formalism Functional Integral Formalism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    L. D. Faddeev and S. L. Shatashvili, Phys. Lett. B,167, 225 (1986).Google Scholar
  2. 2.
    L. D. Faddeev, in: Supersymmetry and its Applications: Superstrings, Anomalies, and Supergravity (eds. G. W. Gibbons, S. W. Hawking, and Townsend), University Press, Cambridge (1986), p. 41.Google Scholar
  3. 3.
    S.-G., Jo, Phys. Lett. B,163, 353 (1985).Google Scholar
  4. 4.
    M. Kobayashi, K. Seo, and A. Sugamoto, Nucl. Phys. B,273, 607 (1986).Google Scholar
  5. 5.
    H. Sonoda, Phys. Lett. B,156, 220 (1985); Nucl. Phys. B,266, 410 (1986).Google Scholar
  6. 6.
    A. Niemi and G. Semenoff, Phys. Rev. Lett.,56, 1019 (1986).Google Scholar
  7. 7.
    K. Fujikawa, Phys. Lett. B,171, 424 (1986).Google Scholar
  8. 8.
    K. Fujikawa, Phys. Rev. D,21, 2848 (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • A. Yu. Alekseev
  • Ya. Madaichik
  • L. D. Faddeev
  • S. L. Shatashvili

There are no affiliations available

Personalised recommendations