Advertisement

Journal of Statistical Physics

, Volume 49, Issue 5–6, pp 1053–1081 | Cite as

Dynamic percolation transition induced by phase separation: A Monte Carlo analysis

  • S. Hayward
  • Dieter W. Heermann
  • K. Binder
Articles

Abstract

The percolation transition of geometric clusters in the three-dimensional, simple cubic, nearest neighbor Ising lattice gas model is investigated in the temperature and concentration region inside the coexistence curve. We consider “quenching experiments,” where the system starts from an initially completely random configuration (corresponding to equilibrium at infinite temperature), letting the system evolve at the considered temperature according to the Kawasaki “spinexchange” dynamics. Analyzing the distributionnl(t) of clusters of sizel at timet, we find that after a time of the order of about 100 Monte Carlo steps per site a percolation transition occurs at a concentration distinctly lower than the percolation concentration of the initial random state. This dynamic percolation transition is analyzed with finite-size scaling methods. While at zero temperature, where the system settles down at a frozen-in cluster distribution and further phase separation stops, the critical exponents associated with this percolation transition are consistent with the universality class of random percolation, the critical behavior of the transient time-dependent percolation occurring at nonzero temperature possibly belongs to a different, new universality class.

Key words

Percolation phase separation Monte Carlo simulation lattice gas model finite-size scaling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. D. Gunton, M. San Miguel, and P. S. Sahni, inPhase Transitions and Critical Phenomena, Vol. 8, C. Domb and J. L. Lebowitz, eds. (Academic Press, New York, 1983), p. 267.Google Scholar
  2. 2.
    K. Binder, inCondensed Matter Research Using Neutrons, S. W. Lovesey and R. Scherm, eds. (Plenum Press, New York, 1984), p. 1.Google Scholar
  3. 3.
    K. Binder,Rep. Progr. Phys. 50:783 (1987).Google Scholar
  4. 4.
    A. C. Zettlemoyer (ed.),Nucleation (Dekker, New York, 1969).Google Scholar
  5. 5.
    F. F. Abraham,Homogeneous Nucleation Theory (Academic Press, New York, 1974).Google Scholar
  6. 6.
    K. Binder and D. Stauffer,Adv. Phys. 25:343 (1976).Google Scholar
  7. 7.
    J. W. Cahn,Acta Met. 9:795 (1961).Google Scholar
  8. 8.
    J. W. Cahn,Trans. Met. Soc. AIME 242:166 (1968).Google Scholar
  9. 9.
    J. S. Langer,Ann. Phys. 65:53 (1971);Acta Met. 21:1649 (1973); J. S. Langer, M. Baron, and H.-D. Miller,Phys. Rev. A 11:1417 (1975).Google Scholar
  10. 10.
    J. W. Cahn and J. E. Milliard,J. Chem. Phys. 31:688 (1959).Google Scholar
  11. 11.
    J. D. Gunton and M. C. Yalabik,Phys. Rev. B 18:6199 (1978); G. Dee, J. D. Gunton, and K. Kawasaki,J. Stat. Phys. 24:87 (1981).Google Scholar
  12. 12.
    W. Klein,Phys. Rev. Lett. 47:1569 (1981).Google Scholar
  13. 13.
    W. Klein and C. Unger,Phys. Rev. B 28:445 (1983); C. Unger and W. Klein,Phys. Rev. B 29:2698 (1984).Google Scholar
  14. 14.
    K. Binder,Phys. Rev. A 29:34 (1984).Google Scholar
  15. 15.
    R. B. Griffiths, C. Y. Weng, and J. S. Langer,Phys. Rev. 149:301 (1966).Google Scholar
  16. 16.
    O. Penrose and J. L. Lebowitz,J. Stat. Phys. 3:211 (1971).Google Scholar
  17. 17.
    K. Binder,Phys. Rev. B 8:3423 (1973).Google Scholar
  18. 18.
    D. W. Heermann, W. Klein, and D. Stauffer,Phys. Rev. Lett. 49:1262 (1982).Google Scholar
  19. 19.
    D. W. Heermann,Phys. Rev. Lett. 52:1126 (1984);Z. Phys. B 61:311 (1985).Google Scholar
  20. 20.
    K. Kaski, K. Binder, and J. D. Gunton,Phys. Rev. B 29:3996 (1984).Google Scholar
  21. 21.
    K. Binder, C. Billotet, and P. Minold,Z. Phys. B 30:1183 (1978).Google Scholar
  22. 22.
    D. Stauffer,Phys. Rep. 54:1 (1979).Google Scholar
  23. 23.
    J. W. Essam,Rep. Progr. Phys. 43:843 (1980).Google Scholar
  24. 24.
    D. Stauffer,An Introduction to Percolation Theory (Taylor and Francis, London, 1985).Google Scholar
  25. 25.
    A. Coniglio,J. Phys. A 8:1773 (1975); A. Coniglio, F. Peruggi, C. Nappi, and L. Russo,J. Phys. A 10:205 (1977).Google Scholar
  26. 26.
    H. Müller-Krumbhaar,Phys. Lett. 50A:27 (1974).Google Scholar
  27. 27.
    D. W. Heermann and D. Stauffer,Z. Phys. 44:339 (1981).Google Scholar
  28. 28.
    D. W. Heermann,Z. Phys. B 55:309 (1984).Google Scholar
  29. 29.
    A. Coniglio and W. Klein,J. Phys. A 13:2775 (1980).Google Scholar
  30. 30.
    C.-K. Hu,Phys. Rev. B 29:5103 (1984).Google Scholar
  31. 31.
    D. W. Heermann and W. Klein,Phys. Rev. B 27:1732 (1983).Google Scholar
  32. 32.
    K. Binder,Solid State Commun. 34:191 (1980).Google Scholar
  33. 33.
    B. B. Mandelbrot,Fractals: Form, Chance, and Dimension (Freeman, San Francisco, 1977);The Fractal Geometry of Nature (Freeman, San Francisco, 1982).Google Scholar
  34. 34.
    M. Schöbinger, S. W. Koch, and F. F. Abraham,J. Stat. Phys. 42:1071 (1986); S. W. Koch, inAdvances on Phase Transitions and Disorder Phenomena, G. Busiello, L. De Cesare, F. Mancini, and M. Marinaro, eds. (World Scientific, Singapore, 1987), p. 72; R. C. Desai and A. R. Denton, inOn Growth and Form, (H. E. Stanley and N. Ostrowsky, eds. (Martinus Nishoff, Boston, 1986), p. 237.Google Scholar
  35. 35.
    K. Binder and D. W. Heermann, inScaling Phenomena in Disordered Systems, R. Pynn and A. Skjeltorp, eds. (Plenum Press, New York, 1985), p. 207.Google Scholar
  36. 36.
    H. Furukawa,Adv. Phys. 34:703 (1986).Google Scholar
  37. 37.
    K. Binder,Phys. Rev. B 15:4424 (1977); K. Binder and D. Stauffer,Phys. Rev. Lett. 33:1006 (1974); K. Binder and M. H. Kalos,J. Stat. Phys. 22:3363 (1980).Google Scholar
  38. 38.
    M. N. Barber, inPhase Transitions and Critical Phenomena, Vol. 8, C. Domb and J. L. Lebowitz, eds. (Academic Press, New York, 1983), p. 146; M. E. Fisher and M. N. Barber,Phys. Rev. Lett. 28:1516 (1972).Google Scholar
  39. 39.
    K. Binder,Ferroelectrics 73:43 (1987); see also K. Binder,Z. Phys. B 43:119 (1981).Google Scholar
  40. 40.
    A. Margolina and H. J. Herrmann,Phys. Lett. 104A:295 (1984).Google Scholar
  41. 41.
    K. Kawasaki, inPhase Transitions and Critical Phenomena, Vol. 2, C. Domb and M. S. Green, eds. (Academic Press, New York, 1972), p. 443.Google Scholar
  42. 42.
    K. Binder and M. H. Kalos, inMonte Carlo Methods in Statistical Physics, K. Binder, ed. (Springer, Berlin, 1979), p. 225.Google Scholar
  43. 43.
    D. W. Heermann,Introduction to Computer Simulation Methods in Theoretical Physics (Springer, Berlin, 1986).Google Scholar
  44. 44.
    S. Hayward, Diplomarbeit, Johannes-Gutenberg-Universität, Mainz (1987), unpublished.Google Scholar
  45. 45.
    D. W. Heermann, Thesis, Boston University (1983), unpublished.Google Scholar
  46. 46.
    P. A. Meakin and S. Reich,Phys. Lett. 92A:247 (1982); A. Levy, S. Reich, and P. Meakin,Phys. Lett. 87A:248 (1982); R. G. Palmer and H. L. Frisch,J. Stat. Phys. 38:867 (1985).Google Scholar
  47. 47.
    K. Binder,Z. Phys. B 43:119 (1981).Google Scholar
  48. 48.
    S. Kirpatrick, inIll-Condensed Matter, R. Balian, R. Maynard, and G. Toulouse, eds. (North-Holland, Amsterdam, 1979), p. 321.Google Scholar
  49. 49.
    K. Binder and D. Stauffer, inApplications of the Monte Carlo Method in Statistical Physics, K. Binder, ed. Springer, Berlin, 1984), p. 1.Google Scholar
  50. 50.
    K. Binder and D. Stauffer, inApplications of the Monte Carlo Method in Statistical Physics, K. Binder, ed. (Springer, Berlin, 1984), Chapter 8.Google Scholar
  51. 51.
    H. J. Herrmann,Phys. Rep. 136:154 (1986).Google Scholar
  52. 52.
    I. M. Lifshitz and V. V. Slyozov,J. Phys. Chem. Solids 19:35 (1961).Google Scholar
  53. 53.
    J. J. Weins and J. W. Cahn, inSintering and Related Phenomena, G. C. Kuczynski, ed. (Plenum Press, New York, 1973), p. 151.Google Scholar
  54. 54.
    K. Kawasaki and T. Ohta,Physica 118A:175 (1983); M. Tokuyama and K. Kawasaki,Physica 123A:386 (1984).Google Scholar
  55. 55.
    T. Ohta,Ann. Phys. 158:31 (1984);Progr. Theor. Phys. 71:1409 (1984).Google Scholar
  56. 56.
    J. A. Marqusee and J. Ross,J. Chem. Phys. 80:536 (1984).Google Scholar
  57. 57.
    H. Tomita,Progr. Theor. Phys. 71:1405 (1984);72:656 (1984).Google Scholar
  58. 58.
    M. Tokuyama, Y. Enomoto, and K. Kawasaki, preprints.Google Scholar
  59. 59.
    H. Furukawa,Phys. Rev. A 29:2160 (1984);A 30:1052 (1984);Physica A 123:497 (1984);Progr. Theor. Phys. 73:586 (1985).Google Scholar
  60. 60.
    P. W. Voorhees,J. Stat. Phys. 38:231 (1985); P. W. Voorhees and M. E. Glicksman,Acta Met. 32:2001, 2013 (1984).Google Scholar
  61. 61.
    J. S. Langer and A. J. Schwartz,Phys. Rev. A 21:948 (1980); R. Kampmann and R. Wagner, inDecomposition of Alloys: The Early Stages, P. Haasen, V. Gerold, R. Wagner, and M. F. Ashby, eds. (Pergamon Press, 1984), p. 143.Google Scholar
  62. 62.
    P. W. Voorhees and M. E. Glicksman,Met. Trans. A 15:1081 (1984); see also W. J. Beenakker and J. Ross,J. Chem. Phys. 83:4710 (1985).Google Scholar
  63. 63.
    C. W. J. Beenakker, preprint; C. W. J. Beenakker and J. Ross, preprint.Google Scholar
  64. 64.
    M. P. Marder, preprint.Google Scholar
  65. 65.
    H. Scher and R. Zallen,J. Chem. Phys. 53:3759 (1970).Google Scholar
  66. 66.
    I. Webman, J. Jortner, and M. H. Cohen,Phys. Rev. B 14:4737 (1976).Google Scholar
  67. 67.
    G. S. Grest and D. J. Srolovitz,Phys. Rev. B 30:5150 (1984).Google Scholar
  68. 68.
    D. W. Heermann and W. Klein,Phys. Rev. Lett. 50:1062 (1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • S. Hayward
    • 1
  • Dieter W. Heermann
    • 1
  • K. Binder
    • 1
  1. 1.Institut für PhysikJohannes-Gutenberg-Universität MainzMainzGermany

Personalised recommendations