Theoretical and Mathematical Physics

, Volume 91, Issue 3, pp 604–612 | Cite as

Quadratic algebras and dynamics in curved spaces. II. The Kepler problem

  • Ya. I. Granovskii
  • A. S. Zhedanov
  • I. M. Lutsenko


The symmetry aspects of the Kepler problem in a space of constant negative curvature are considered. It is shown that the algebra of the hidden symmetry reduces to the quadratic Racah algebraQR(3), and this makes it possible to express the coefficients of the overlapping of the wave functions in the spherical and parabolic coordinates in terms of Wilson-Racah polynomials. It is shown that the dynamical symmetry algebra that generates the spectrum is the quadratic Jacobi algebraQJ(3). Its ladder operators permit explicit construction of wave functions in the coordinate representation with the ground state as the starting point.


Wave Function Curve Space Negative Curvature Explicit Construction Symmetry Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Schrödinger,Proc. R. Ir. Acad., Sect. A,45, 9 (1940).Google Scholar
  2. 2.
    V. A. Fock,Z. Phys.,98, 145 (1935); V. Bargmann, Z.Phys.,99, 576 (1936).Google Scholar
  3. 3.
    P. W. Higgs,J. Phys. A,12, 309 (1979); H. J. Leemon,J. Phys. A,12, 489 (1979).Google Scholar
  4. 4.
    Yu. A. Kurochkin and V. S. Otchik,Dokl. Akad. Nauk BSSR,23, 987 (1979).Google Scholar
  5. 5.
    W. Pauli,Z. Phys.,36, 336 (1926).Google Scholar
  6. 6.
    A. A. Bogush, V. S. Otchik, and V. M. Red'kov,Vestsi Akad. Navuk BSSR, No.3, 56 (1983); V. S. Otchik and V. M. Red'kov, Preprint No. 298 [in Russian], In-t Fiziki AN BSSR (1983).Google Scholar
  7. 7.
    Ya. I. Granovskii, A. S. Zhedanov, and I. M. Lutzenko,J. Phys. A,24, 3887 (1991).Google Scholar
  8. 8.
    L. D. Landau and E. M. Lifshitz,Quantum Mechanics: Non-Relativistic Theory, 3rd ed., Pergamon Press, Oxford (1977).Google Scholar
  9. 9.
    E. K. Sklyanin,Funktsional Analiz i Ego Prilozhen.,16, 27 (1982);17, 34 (1983).Google Scholar
  10. 10.
    O. F. Gal'bert, Ya. I. Granovskii, and A. S. Zhedanov,Phys. Lett. A,153, 177 (1991).Google Scholar
  11. 11.
    Ya. I. Granovskii, A. S. Zhedanov, and I. M. Lutsenko,Zh. Eksp. Teor. Fiz.,99, 369 (1991).Google Scholar
  12. 12.
    Ya. I. Granovskii, A. S. Zhedanov, and I. M. Lutsenko,Teor. Mat. Fiz.,91, 207 (1992).Google Scholar
  13. 13.
    Ya. I. Granovskii and A. S. Zhedanov, Preprint 89-7 [in Russian], Donetsk Physicotechnical Institute (1989).Google Scholar
  14. 14.
    Ya. I. Granovskii and A. S. Zhedanov,Zh. Eksp. Teor. Fiz.,94, 49 (1988).Google Scholar
  15. 15.
    J. Wilson,SIAM J. Math. Anal.,11, 690 (1980).Google Scholar
  16. 16.
    S. K. Suslov,Yad. Fiz.,40, 126 (1984).Google Scholar
  17. 17.
    A. M. Perelomov,Generalized Coherent States and Their Applications [in Russian], Nauka, Moscow (1987).Google Scholar
  18. 18.
    G. A. Zaitsev,Algebraic Problems of Mathematical and Theoretical Physics [in Russian], Nauka, Moscow (1974).Google Scholar
  19. 19.
    W. Miller (Jr.),Symmetry and Separation of Variables [Russian translation], Mir, Moscow (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Ya. I. Granovskii
  • A. S. Zhedanov
  • I. M. Lutsenko

There are no affiliations available

Personalised recommendations