Advertisement

Theoretical and Mathematical Physics

, Volume 100, Issue 1, pp 912–915 | Cite as

Notes on the differential calculi on quantum linear groups

  • P. N. Pyatov
  • P. A. Saponov
Article

Abstract

This talk is devoted to the problem of constructing differential calculi on quantum linear groups. Based on the natural algebraic postulates, we examine the possible commutation relations for theGLq(N)- andSLq(N)-invariant differential forms and vector fields. It turns out that there exist several families of admissible commutation rules forGLq(N), but, in contrast, the commutation prescription forSLq(N) is unique.

Keywords

Vector Field Commutation Relation Differential Form Linear Group Differential Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. L. Woronowicz, Comm. Math. Phys.,122, 125 (1989).Google Scholar
  2. [2]
    L. D. Faddeev, N. Reshetikhin, and L. Takhtajan, Alg. Anal.,1, 178 (1989).Google Scholar
  3. [3]
    G. Maltsiniotis, C. R. Acad. Sci. Paris,331, 831–834 (1990); Calcul différentiel sur le groupe linéarie quantique, Preprint ENS (1990).Google Scholar
  4. [4]
    A. Sudbery, Phys. Lett.,B284, 61 (1992).Google Scholar
  5. [5]
    A. Schirrmacher, in: Groups and Related Topics (R. Gielerak et al., eds.), Kluwer Academic Publishers, 55 (1992).Google Scholar
  6. [6]
    P. Schupp, P. Watts, and B. Zumino, Lett. Math. Phys.,25, 139 (1992); B. Zumino, Differential Calculus on Quantum Spaces and Quantum Groups, Preprint LBL-33249, UCB-PTH-92/41 (1992).Google Scholar
  7. [7]
    A. P. Isaev and P. N. Pyatov, Phys. Lett.,A179, 81 (1993); A. P. Isaev and P. N. Pyatov, Covariant Differnetial Complexes on Quantum Linear Groups, JINR Preprint E2-93-416, HEP-TH/9311112, submitted to Comm. Math. Phys.Google Scholar
  8. [8]
    M. Jimbo, Lett. Math. Phys.,10, 63 (1985); ibid M. Jimbo, Lett. Math. Phys.11, 247 (1986).Google Scholar
  9. [9]
    N. Yu. Reshetikhin, Alg. Anal.,1, No. 2, 169 (1989).Google Scholar
  10. [10]
    H. Weyl,Theory of Groups and Quantum Mechanics, Dover Publications (1931).Google Scholar
  11. [11]
    G. Lusztig, Adv. Math.,70, 237 (1988); M. Rosso, C.R. Acad. Sci. Paris, Ser. I,305, 587 (1987).Google Scholar
  12. [12]
    Yu. Manin, Comm. Math. Phys.,122, 163 (1989).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • P. N. Pyatov
  • P. A. Saponov

There are no affiliations available

Personalised recommendations