Theoretical and Mathematical Physics

, Volume 84, Issue 1, pp 700–706 | Cite as

Elliptic solutions of nonlinear equations

  • I. A. Taimanov


Nonlinear Equation Elliptic Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, Usp. Mat. Nauk,31, 55 (1976).Google Scholar
  2. 2.
    B. A. Dubrovin, I. M. Krichever, and S. P. Novikov, in: Modern Problems of Mathematics. fundamental Directions, Vol. 4 [in Russian], VINITI, Moscow (1985), pp. 179–285.Google Scholar
  3. 3.
    E. D. Belokolos, A. I. Bobenko, V. B. Matveev, and V. Z. Énol'skii, Usp. Mat. Nauk,41, 3 (1986).Google Scholar
  4. 4.
    B. A. Dubrovin and S. P. Novikov, Zh. Eksp. Teor. Fiz.,67, 2131 (1974).Google Scholar
  5. 5.
    I. M. Krichever, Funktsional. Analiz i Ego Prilozhen.,14, 45 (1980).Google Scholar
  6. 6.
    J.-L. Verdier, “New elliptic solitons,” Preprint, Paris (1987).Google Scholar
  7. 7.
    J. D. Fay, Lect. Notes in Math., Vol. 352, Springer (1973).Google Scholar
  8. 8.
    S. G. Dalalyan, Usp. Mat. Nauk,29, 165 (1974).Google Scholar
  9. 9.
    S. G. Dalalyan, Mat. Sb.,98, 255 (1975).Google Scholar
  10. 10.
    I. A. Taimanov, “Geometrical aspects of some nonlinear systems,” Candidate's Dissertation [in Russian], Moscow State University (1987).Google Scholar
  11. 11.
    E. D. Belokolos and V. Z. Énol'skii, Funktsional. Analiz i Ego Prilozhen.,23, 57 (1989).Google Scholar
  12. 12.
    M. V. Babich, A. I. Bobenko, and V. B. Matveev, Izv. Akad Nauk SSSR, Ser. Mat.,49, 511 (1985).Google Scholar
  13. 13.
    A. O. Smirnov, Teor. Mat. Fiz.,78, 11 (1989).Google Scholar
  14. 14.
    B. A. Dubrovin and S. M. Natanzon, Funktsional.Analiz i Ego Prilozhen.,16, 27 (1982).Google Scholar
  15. 15.
    E. D. Belokolos and V. Z. Énol'skii, Teor. Mat. Fiz.,53, 271 (1982).Google Scholar
  16. 16.
    A. Érdelyi et al. (eds), Higher Transcendental Functions (California Institute of Technology H. Bateman M. S. Project), Vol. 3, McGraw Hill, New York (1955).Google Scholar
  17. 17.
    B. A. Dubrovin, Usp. Mat. Nauk,36, 11 (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • I. A. Taimanov

There are no affiliations available

Personalised recommendations