Journal of Statistical Physics

, Volume 40, Issue 3–4, pp 563–575 | Cite as

Correlation inequalities for a class of even ferromagnets

  • Kei-ichi Kondo
  • Takeshi Otofuji
  • Yüki Sugiyama


We present rigorous correlation inequalities for connectedn-point functions in a class of even ferromagnets. The class includes spin-1/2 Ising models and scalar field models with potential functionV which is even and continuously differentiable withV′ convex on [0, ∞). These inequalities are obtained by pushing ahead with the method of Ellis, Monroe, and Newman at its maximum.

Key words

Correlation inequality Ising model scalar field models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Ruelle,Statistical Mechanics: Rigorous Results (W. A. Benjamin, New York, 1969); J. Glimm and A. Jaffe,Quantum Physics: A Functional Integral Point of View (Springer, New York, 1981).Google Scholar
  2. 2.
    B. Simon,The P(φ) 2 Euclidean (Quantum) Field Theory (Princeton University Press, Princeton, 1974).Google Scholar
  3. 3.
    M. Aizenman,Phys. Rev. Lett. 47:1 (1981);Commun. Math. Phys. 86:1 (1982); J. Fröhlich,Nucl. Phys. B200[FS4]:281 (1982); C. Aragao de Carvalho, S. Caracciolo, and J. Fröhlich,Nucl. Phys. B215[FS7]:209 (1983); M. Aizenman and R. Graham,Nucl. Phys. B225[FS9]:209 (1983).Google Scholar
  4. 4.
    D. C. Brydges, J. Fröhlich, and A. D. Sokal,Commun. Math. Phys. 91:141 (1983).Google Scholar
  5. 5.
    R. S. Ellis and J. L. Monroe,Commun. Math. Phys. 41:33 (1975).Google Scholar
  6. 6.
    R. S. Ellis, J. L. Monroe, and C. M. Newman,Commun. Math. Phys. 46:167 (1976).Google Scholar
  7. 7.
    R. S. Ellis and Ch. M. Newman,Trans. Am. Math. Soc. 237:83 (1978).Google Scholar
  8. 8.
    G. S. Sylvester,J. Stat. Phys. 15:327 (1976).Google Scholar
  9. 9.
    B. Simon,Functional Integration and Quantum Physics (Academic Press, New York, 1979).Google Scholar
  10. 10.
    J. K. Percus,Commun. Math. Phys. 40:283 (1975).Google Scholar
  11. 11.
    G. S. Sylvester,Commun. Math. Phys. 42:209 (1975).Google Scholar
  12. 12.
    K.-I. Kondo, Nagoya Univ. preprint, DPNU-84-25.Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • Kei-ichi Kondo
    • 1
  • Takeshi Otofuji
    • 1
  • Yüki Sugiyama
    • 1
  1. 1.Department of PhysicsNagoya UniversityNagoyaJapan

Personalised recommendations