Advertisement

Theoretical and Mathematical Physics

, Volume 95, Issue 2, pp 583–594 | Cite as

Recent efforts in the computation of string couplings

  • Albrecht Klemm
  • Stefan Theisen
Article

Abstract

We review recent advances towards the computation of string couplings. Duality symmetry, mirror symmetry, Picard-Fuchs equations, etc. are some of the tools.

Keywords

Mirror Symmetry Recent Effort String Coupling Duality Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    For a review with an extensive list of references, consultHübsch T. Calabi-Yau Manifolds: World Scientific, 1991.Google Scholar
  2. [2]
    Kikkawa K., Yamasaki M.// Nucl. Phys. 1984. V. 149. P. 357;Sakai N., Senda I.// Prog. Theor. Phys. 1984. V. 75. P. 692;Nair V.P., Shapere A., Strominger A., Wilczek F.// Nucl. Phys. 1987. V. 287. P. 402;Giveon A., Rabinovici E., Veneziano G.// Nucl. Phys. 1989. V. 322. P. 167.Google Scholar
  3. [3]
    Dine M., Huet P., Seiberg N.// Nucl. Phys. 1989. V. 322. P. 301;Lauer J., Mas J., Nilles H.P.// Phys. Lett. 1989. V. 226. P. 251;Spaliński M.// Phys. Lett. 1992. V. 275. P. 47.Google Scholar
  4. [4]
    Candelas P., de la Ossa X., Green P., Parkes L.// Nucl. Phys. 1991. V. 359. P. 21.Google Scholar
  5. [5]
    Klemm A., Theisen S.// Considerations of One-Modulus Calabi-Yau Compactifications: Picard-Fuchs equations, Kähler Potentials and Mirror Maps. Nucl. Phys. B (in press).Google Scholar
  6. [6]
    Font A. Periods and Duality Symmetries in Calabi-Yau Compactifications. Preprint UCVFC-1-92.Google Scholar
  7. [7]
    Ferrara S., Lüst D., Shapere A., Theisen S.// Nucl. Phys. 1989. V. 225. P. 363.Google Scholar
  8. [8]
    Cremmer E., Julia B., Scherk J., Girardello L., van Nieuwenhuizen P.// Nucl. Phys. 1979. V. 147. P. 105;Cremmer E., Ferrara S., Girardello L., Van Proeyen A.// Nucl. Phys. 1983. V. 212. P. 413.Google Scholar
  9. [9]
    Dixon L., Kaplunovsky V., Louis J.// Nucl. Phys. 1990. V. 329. P. 27.Google Scholar
  10. [10]
    Ferrara S., Lüst D., Theisen S.// Nucl. Phys. 1989. V. 233. P. 147.Google Scholar
  11. [11]
    Seiberg N.// Nucl. Phys. 1988. V. 303. P. 286.Google Scholar
  12. [12]
    For reviews seeFerrara S.// Mod. Phys. Lett. 1991. V. A6. P. 2175;Ferrara S., Theisen S. In Proceeedings of the Hellenic Summer School 1989, World Scientific and references therein.Google Scholar
  13. [13]
    Strominger A.// Comm. Math. Phys. 1990. V. 133. P. 163.Google Scholar
  14. [14]
    Castellani L., D'Auria R., Ferrara S.// Nucl. Phys. 1990. V. 241. P. 57, Class. Quantum Grav. 1990. V. 7. P. 1767;Ferrara S., Louis J.// Nucl. Phys. 1992. V. 278. P. 240.Google Scholar
  15. [15]
    Distler J., Greene B.// Nucl. Phys. 1988. V. 309. P. 295.Google Scholar
  16. [16]
    Ferrara S., Strominger A. In the Proceedings of the Texas A & M Strings '89 Workshop. Ed. R. Arnowitt et al. World Scientific, 1990.Google Scholar
  17. [17]
    Candelas P., Green P., Hübsch T.// Nucl. Phys. 1990. V. 330. P. 49;Candelas P., de la Ossa X. C.// Nucl. Phys. 1991. V. 355. P. 455.Google Scholar
  18. [18]
    Bryant R., Griffiths P.// Progress in Mathematics V. 36. P. 77. Birkhäuser, 1983.Google Scholar
  19. [19]
    Tian G. In: Mathematical Aspects of String Theory. Ed. Yau S.-T. World Scientific, 1987.Google Scholar
  20. [20]
    Strominger A.// Phys. Rev. Lett. 1985. V. 55. P. 2547.Google Scholar
  21. [21]
    Ferrara S., Lüst D., Theisen S.// Nucl. Phys. 1990. V. 242. P. 39.Google Scholar
  22. [22]
    Witten E.// Nucl. Phys. 1986. V. 268. P. 79Google Scholar
  23. [23]
    Greene B., Plesser// Nucl. Phys. 1990. V. 338. P. 15.Google Scholar
  24. [24]
    Roan S. S.// Int. Jour. Math. 1990. V. 1. P. 211; see also Topological Couplings of Calabi-Yau Orbifolds. Preprint MPI.f. Math. Bonn: MPI/92/22.Google Scholar
  25. [25]
    Batyrev V. V. Dual polyhedra and the mirror symmetry for Calabi-Yau hypersurfaces in toric varieties. Preprint 92, Math. Fak. Univ. Essen.Google Scholar
  26. [26]
    Yau S. T. Compact three dimensional Kähler manifolds with zero Ricci curvature. In: Geometry, Anomalies, Topology (1985). Eds. W. Bardeen, A. White.Google Scholar
  27. [27]
    Gepner D. The Exact Structure of Calabi-Yau Compactification. In: Perspectives of String Theory Copenhagen 1987. Eds. P. Di Vecchia, J.L. Peterson.Google Scholar
  28. [28]
    Lerche W., Vafa C., Warner N. P.// Nucl. Phys. 1989. V. 324. P. 427.Google Scholar
  29. [29]
    Fuchs J., Klemm A., Scheich C., Schmidt M.// Nucl. Phys. 1989. V. 232. P. 383, Ann. Phys. 1990. V. 204. P. 163.Google Scholar
  30. [30]
    Klemm A. Ph.D. Thesis, Heidelberg University, Preprint HD-THEP-90-45.Google Scholar
  31. [31]
    Dijkgraaf R., Verlinde H., Verlinde E.// Nucl. Phys. 1991. V. 352. P. 59; Lossev A., lectures at this conference.Google Scholar
  32. [32]
    Klemm A., Theisen S., Schmidt M.G.// Correlation Functions for Topological Landau-Ginzburg Models withc≤3. Int. J. Mod. Phys. A (in press).Google Scholar
  33. [33]
    Morrison D. R. Picard-Fuchs equations and mirror maps for hypersurfaces. Preprint DUK-M-91-14.Google Scholar
  34. [34]
    Griffiths P.// Ann. Math. 1969. V. 90. P. 460; see alsoLerche W., Smit, D., Warner N.// Nucl. Phys. 1992. V. 372. P. 87.Google Scholar
  35. [35]
    Cadavid A., Ferrara S.// Nucl. Phys. 1991. V. 267. P. 193.Google Scholar
  36. [36]
    Louis J. Differential Equations in Special Kähler Geometry. Preprint CERN-TH.6580/92.Google Scholar
  37. [37]
    Candelas P.// Nucl. Phys. 1988. V. 298. P. 458.Google Scholar
  38. [38]
    Ince E.L. Ordinary differential equations. Dover, 1956.Google Scholar
  39. [39]
    Grisaru M., van de Ven A., Zanon D.// Nucl. Phys. 1986. V. 173. P. 423; Nucl. Phys. 1986. V. 277. P. 388; Nucl. Phys. 1986. V. 277. P. 409.Google Scholar
  40. [40]
    Gross D., Sloan J.// Nucl. Phys. 1987. V. 291. P. 41;Cai N., Nunez C.// Nucl. Phys. 1987. V. 287. P. 279.Google Scholar
  41. [41]
    Aspinwall P.S., Morrison D.R. Topological field theory and rational curves. Preprint OUTP-91-32P.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Albrecht Klemm
  • Stefan Theisen

There are no affiliations available

Personalised recommendations