Theoretical and Mathematical Physics

, Volume 95, Issue 2, pp 526–534 | Cite as

Flat connections and polyubles

  • V. V. Fock
  • A. A. Rosly


The Poisson structure of the moduli space of flat connections on a two dimensional Riemann surface is described in terms of lattice gauge fields and Poisson-Lie groups.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Axelrod S., Witten E., Della Pietra S. Geometric quantization of Chern-Simons gauge theory. Preprint IASSNS-HEP-89/57.Google Scholar
  2. [2]
    Witten E. On Quantum Gauge Theory in Two Dimensions. Preprint IASSNS-HEP-91/3.Google Scholar
  3. [3]
    A. Bilal, Fock V.V., Kogan I.I. On the origin ofW-algebras.// Nucl. Phys. 1991. V. B359. 2–3, P. 635–672.Google Scholar
  4. [4]
    Narasimhan M.S., Ramanan S. Deformations of moduli space of vector bundles over an Algebraic Curve.// Ann. Math. 1975. V. 101. P. 31–34.Google Scholar
  5. [5]
    Atiyah M., Bott R. The Yang-Mills Equations over a Riemann Surface.// Phil. Trans. Roy. Soc. Lond. 1982. V. A308. P. 523.Google Scholar
  6. [6]
    Beilinson A.A., Drinfeld V.G., Ginzburg V.A. Differential Operators on Moduli Space ofG-bundles: Preprint.Google Scholar
  7. [7]
    Hitchin N. Stable Bundles and Integrable Systems.// Duke. Math. J. 1987. V. 54. P. 97–114.Google Scholar
  8. [8]
    Semenov-Tian-Shansky M.A. Dressing Transformations and Poisson Group Actions. Publ. RIMS Kyoto Univ. 1985. V. 21. P. 1237–1260.Google Scholar
  9. [9]
    Alekseev A., Faddeev L., Semenov-Tian-Shansky M., Volkov A. The Unraveling of the Quantum Group Structure in WZNW Theory. Preprint CERN-TH-5981/91.Google Scholar
  10. [10]
    Alekseev A., Faddeev L., Semenov-Tian-Shansky M. Hidden Quantum Group inside Kac-Moody Algebra. Preprint LOMI E-5-91.Google Scholar
  11. [11]
    Turaev V.G. Algebras of Loops on Surfaces, Algebras of Knots, and Quantization. In: Braid Group, Knot Theory and Statistical Mechanics. Singapore, 1989. P. 80–93.Google Scholar
  12. [12]
    Weinstein A. The Local Structure of Poisson Manifolds.// J. Diff. Geom. 1983. V. 18. P. 523–557.Google Scholar
  13. [13]
    Fock V.V., Rosly A.A. Poisson structure on moduli of flat connections on Riemann surfaces andr-matrix. Preprint ITEP-72-92.Google Scholar
  14. [14]
    Faddeev L.D., Takhtadjan L.A. Hamiltonian Approach in Soliton Theory, M.: Nauka, 1986.Google Scholar
  15. [15]
    Ovsienko V.Yu., Khesin B.A. Gelfand-Dikey Bracket Symplectic Leaves and the Homotopy Classes of Nonflattened Curves// Funkts. Anal. Prilozhen. 1991. V. 24, 1, P. 38–48.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • V. V. Fock
  • A. A. Rosly

There are no affiliations available

Personalised recommendations