Advertisement

Theoretical and Mathematical Physics

, Volume 54, Issue 1, pp 62–70 | Cite as

Complex geometry and integral representations in the future tube in ℂ3

  • A. G. Sergeev
Article

Keywords

Integral Representation Complex Geometry Future Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. G. Sergeev and G. M. Khenkin, Mat. Sb.,112, 522 (1980).Google Scholar
  2. 2.
    F. Freeman, “Real submanifolds with degerate Levi form,” Proc. Symp. Pure Math., Providence, Rhode Island, AMS,30, 141 (1977).Google Scholar
  3. 3.
    S. Bochner, Ann. Math.,45, 686 (1944).Google Scholar
  4. 4.
    V. S. Vladimirov, Sib. Mat. Zh.,9, 1238 (1968).Google Scholar
  5. 5.
    V. S. Vladimirov, Izv. Akad. Nauk SSSR, Ser. Mat.,33, 90 (1969).Google Scholar
  6. 6.
    V. S. Vladimirov, Izv. Akad. Nauk SSSR, Ser. Mat.,36, 534 (1972).Google Scholar
  7. 7.
    V. S. Vladimirov, Methods of the Theory of Functions of Many Complex Variables [in Russian], Nauka, Moscow (1964).Google Scholar
  8. 8.
    V. S. Vladimirov, Generalized Functions in Mathematical Physics [in Russian], Nauka, Moscow (1976).Google Scholar
  9. 9.
    Qui-keng Lu, Acta. Math. Sin.,16, 344 (1965).Google Scholar
  10. 10.
    J. Bros, C. Itzykson, and F. Pham, Ann. Inst. H. Poincaré, Sec. A.5, 1 (1966).Google Scholar
  11. 11.
    R. Jost and H. Lehmann, Nuovo Cimento,5, 1598 (1957).Google Scholar
  12. 12.
    F. J. Dyson, Phys. Rev.,110, 1460 (1958).Google Scholar
  13. 13.
    M. Freeman, Ann. Math.,106, 319 (1977).Google Scholar
  14. 14.
    L. A. Aizenberg and A. P. Yuzhakov, Integral Representations and Residues in Multidimensional Complex Analysis [in Russian], Nauka, Novosibirsk (1979).Google Scholar
  15. 15.
    J. Leray, “Le calcul différential et intégral sur une varieté analytique complex (Problème de Cauchy, III),” Bull. Soc. Math. France,87, 81 (1959).Google Scholar
  16. 16.
    G. M. Khenkin and E. M. Chirka, “Boundary properties of holomorphic functions of several complex variables,” Sovremennye Problemy Matematiki (Itogi Nauki i Tekhniki), VINITI,4, 13 (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • A. G. Sergeev

There are no affiliations available

Personalised recommendations