Theoretical and Mathematical Physics

, Volume 92, Issue 3, pp 1020–1023 | Cite as

The Dirac bracket

  • V. P. Pavlov


The possibility of giving a geometrical meaning to Hamiltonian dynamics in the presence of second-class constraints by using the Dirac bracket to define a symplectic structure on the phase space is discussed.


Phase Space Geometrical Meaning Symplectic Structure Hamiltonian Dynamic Dirac Bracket 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. A. M. Dirac, “Generalized Hamiltonian dynamics,”Can. J. Math.,2, 129 (1948).Google Scholar
  2. 2.
    L. D. Faddeev, “Feynman integral for singular Lagrangians,”Teor. Mat. Fiz.,1, 3 (1969).Google Scholar
  3. 3.
    C. Becci, A. Rouet, and R. Stora, in:Renormalization Theory (G. Velo and A. S. Wightman eds.), Reidel, Dordrecht (1976).Google Scholar
  4. 4.
    F. R. Gantmacher,The Theory of Matrices, translation of first Russian ed., Chelsea, New York (1959).Google Scholar
  5. 5.
    D. M. Gitman and I. V., Tyutin,Canonical Quantization of Fields with Constraints [in Russian], Nauka, Moscow (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • V. P. Pavlov

There are no affiliations available

Personalised recommendations