Advertisement

Theoretical and Mathematical Physics

, Volume 92, Issue 3, pp 938–951 | Cite as

Remarks on the physical states and the chiral algebra of 2D gravity coupled toC≤1 matter

  • Vi. S. Dotsenko
Article

Abstract

Some elaboration is givent to the structure of physical states in 2D gravity coupled to C≤1 matter, and to the chiral algebra (w of CM=1 theory which has been found recently, in the continuum approach, by Witten and by Klebanov and Polyakov. It is then shown that the chiral algebra is realized as well in the minimal models of gravity (CM<1), so that it stands as a general symmetry of 2D gravity theories.

Keywords

Physical State Minimal Model Gravity Theory Continuum Approach General Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Lian B., Zuckerman G., Phys. Lett.254B (1991), 417;266B, 21.Google Scholar
  2. [2]
    Bouwknegt P., McCarthy J., Pilch K., Preprint CERN-TH6162/91, July 1991; 6279/91, October 1991.Google Scholar
  3. [3]
    Witten E., Preprint SLAC-PUB-IASSNS-HEP-91/51, August 1991.Google Scholar
  4. [4]
    Klebanov I.R., Polyakov A.M., Mod. Phys. Lett.A6 (1991), 3273.Google Scholar
  5. [5]
    Avan J., Jevicki A. Phys. Lett.266B (1991), 35; Preprint BROWN-HET-824 839; Mimic D., Polchinski J., Yang Z., Preprint UTTG-16-91; Moore G., Seiberg N., Preprint RU-91-29, YCTP-P19-91 Das S., Dhar A., Mandal G., Wadia S., Preprints IASSNS-HEP-91/52, 91/72.Google Scholar
  6. [6]
    Dotsenko Vl.S., Preprint PAR-LPTHE 92-4, January 1992.Google Scholar
  7. [7]
    Felder G., Nucl. Phys.B317 (1989), 215;B324, 548.Google Scholar
  8. [8]
    Govindarajan S., Jayaraman T., John V., Majumdar P., Preprint IMSc-91/40, December 1991.Google Scholar
  9. [9]
    Dotsenko Vl.S., Mod. Phys. Lett.A6 (1991), 3601.Google Scholar
  10. [10]
    Kitazawa Y., Phys. Lett.B265 (1991), 262.Google Scholar
  11. [11]
    Goulian M., Li M., Phys. Rev. Lett.66 (1991), 2051; Francesco P.Di., Kutasov D., Phys.Lett.B261 (1991), 385; Alvarez-Gaumé L., Barbón J.L.F., Gómez C., Preprint SLAC-PUB-CERN-TH.6142/91, June 1991; Aoki K., D'Hoker E., Preprint UCLA/91/TEP/32, August 1991; Gervais J.-L., Preprint LPTENS 91/28, September 1991; Sakai N., Tanii Y.,// Prog. Theor. Phys. vol. 86, 1991, p. 547.Google Scholar
  12. [12]
    Dotsenko Vl.S., Fateev V.A., Nucl. Phys.B251 (1985), 691; Phys. Lett.154B (1985), 291.Google Scholar
  13. [13]
    Zamolodchikov A.B., Fateev V.A., Yad. Fiz.43 (1986), 1031; Sov. J. Nucl. Phys.43 (1986), 637.Google Scholar
  14. [14]
    Frenkel I.B., Kac V.G., Invent. Math.62 (1980), 23; Segal G., Commun. Math. Phys.80 (1981), 301.Google Scholar
  15. [15]
    Dotsenko Vl.S., Adv. Stud. in Pure Math.16 (1988), 123.Google Scholar
  16. [16]
    Dotsenko Vl. S., Preprint CERN-TH.6502/92, PAR-LPTHE 92-17, May 1992.Google Scholar
  17. [17]
    Chair N., Dobrev V.K., Kanno H., Preprint IC/92/17, January 1992.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Vi. S. Dotsenko

There are no affiliations available

Personalised recommendations