Theoretical and Mathematical Physics

, Volume 99, Issue 3, pp 668–674 | Cite as

q-Discretization of the two-dimensional Toda equations

  • K. Kajiwara
  • Ya. Ohta
  • J. Satsuma


q-Discrete versions of the two-dimensional Toda molecule equation and the two-dimensional Toda lattice equation are proposed through the direct method. The Bäcklund transformation and the Lax pair of the former are obtained. Moreover, the reduction to theq-discrete cylindrical Toda equations is also discussed.


Lattice Equation Molecule Equation Toda Lattice Toda Equation Toda Lattice Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    V. G. Drinfel'd, Sov. Math. Dokl.32 (1985), 254.Google Scholar
  2. [2]
    M. Jimbo, Lett. Math. Phys.10 (1985), 63.Google Scholar
  3. [3]
    H. Exton,q-Hypergeometric Functions and Applications (Ellis Horwood, Chichester, 1983).Google Scholar
  4. [4]
    T. H. Koornwinder, in: Orthogonal Polynomials, ed. P. Nevai (Kluwer Academic, Dordrecht, 1990), p.257.Google Scholar
  5. [5]
    T. Masuda, K. Mimachi, Y. Nakagami, M. Noumi, and K. Ueno, J. Func. Anal.99 (1991), 357.Google Scholar
  6. [6]
    A. Nakamura, Prog. Theor. Phys. Suppl.94 (1988), 195.Google Scholar
  7. [7]
    K. Okamoto, in: Algebraic Analysis (Academic, Boston, 1988), p.647.Google Scholar
  8. [8]
    R. Hirota, J. Phys. Soc. Jpn.,43 (1977), 1424.Google Scholar
  9. [9]
    R. Hirota, S. Tsujimoto, and T. Imai, RIMS Kokyuroku, Kyoto Univ.,822 (1993), 144.Google Scholar
  10. [10]
    R. Hirota and A. Nakamura, J. Phys. Soc. Jpn.56 (1987), 3055.Google Scholar
  11. [11]
    K. Kajiwara, Y. Ohta, and J. Satsuma, Phys. Lett.,A180 (1993), 249.Google Scholar
  12. [12]
    A. Nakamura, J. Phys. Soc. Jpn.52 (1983), 380.Google Scholar
  13. [13]
    M. A. Olshanetski, talk delivered at NEEDS '93.Google Scholar
  14. [14]
    A. Mironov, A. Morozov, and Luc Vinet, “On a c-number quantum τ-function”, preprint, hep-th/9312213.Google Scholar
  15. [15]
    F. W. Nijhoff, “On aq-Deformation of the Discrete Painlevé I equation andq-orthogonal Polynomials”, preprint.Google Scholar
  16. [16]
    K. Okamoto, Ann. Mat. (1986), 337; Japan J. Math.,13 (1987), 47; Math. Ann.,275 (1986), 221; Funkcialaj Ekvacioj,30 (1987), 305.Google Scholar
  17. [17]
    A. Ramani, B. Grammaticos, and J. Hietarinta, Phys. Rev. Lett.67 (1991), 1829.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • K. Kajiwara
  • Ya. Ohta
  • J. Satsuma

There are no affiliations available

Personalised recommendations