Radial distribution measurement of SiH* in a low-pressure silane plasma

  • Yuichiro Asano
  • Douglas S. Baer
  • Rolf Hernberg
  • Ronald K. Hanson
Article

Abstract

The radial emission intensity distribution of SiH* (A2Δ,v=0) over the substrate of a low-pressure silane plasma was investigated for various substrate temperatures (Ts=20–320°C). Measured lateral intensities were converted to radial emission coefficients using an Abel inversion. The intensity near the center of the substrate was found to increase withTs and yielded an activation energyEa of 1.1 kcal/mole. This result is consistent with the value ofEa determined by laser-induced flourescence measurements obtained previously. Radially resolved emission data obtained by varying the operating parameters of rf power, gas flow rate, silane/argon mixing rate, and total gas pressure provide a useful means of determining the conditions necessary to generate a uniform plasma.

Key Words

Optical emission spectroscopy Abel inversion rf discharge silane plasma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. J. Kampas and R. W. Griffith,J. Appl. Phys. 52, 1285 (1981).Google Scholar
  2. 2.
    J. Perrin and J. P. M. Schmitt,Chem. Phys. 67, 167 (1982).Google Scholar
  3. 3.
    A. Matsuda and K. Tanaka,Thin Solid Films 92, 171 (1982).Google Scholar
  4. 4.
    A. Garscadden,Mater. Res. Soc. Symp. Proc. 68, 127 (1986).Google Scholar
  5. 5.
    F. B. Hildebrand,Methods of Applied Mathematics, Prentice-Hall, Englewood Cliffs, New Jersey (1952).Google Scholar
  6. 6.
    E. T. Whittaker and G. N. Watson,A Course of Modern Analysis, Macmillan, New York (1948).Google Scholar
  7. 7.
    R. S. Anderssen, MRC Technical Summary Report No. 1787 (1977); R. S. Anderssen, The Australian National University Mathematics Research Report No. 7 (1982).Google Scholar
  8. 8.
    Y. Asano, D. S. Baer, and R. K. Hanson,J. Non-Cryst. Solids 94, 5 (1987).Google Scholar
  9. 9.
    F. P. Chen and R. Gouland,J. Quant. Spectrosc. Radiat. Transfer 16, 819 (1976).Google Scholar
  10. 10.
    D. W. Blair,J. Quant. Spectrosc. Radiat. Transfer 14, 325 (1974).Google Scholar
  11. 11.
    C. J. Cremers and R. C. Birkebak,Appl. Opt. 5, 1057 (1966).Google Scholar
  12. 12.
    L. Klynning and B. Lindgrem,Ark. Fys. 33, 73 (1966).Google Scholar
  13. 13.
    T. Sugano,Applications of Plasma Processes to VLSI Technology, Wiley, New York (1985). pp. 164–166, 189.Google Scholar
  14. 14.
    R. Robertson, D. Hils, H. Chatham, and A. Gallagher,Appl. Phys. Lett. 43, 544 (1983).Google Scholar
  15. 15.
    P. A. Longeway, R. D. Estes, and H. A. Weakliem,J. Phys. Chem. 88, 73, (1984).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • Yuichiro Asano
    • 1
  • Douglas S. Baer
    • 2
  • Rolf Hernberg
    • 3
  • Ronald K. Hanson
    • 2
  1. 1.Technical Research DivisionKawasaki Steel CorporationChiba 280Japan
  2. 2.High-Temperature Gasdynamics Laboratory, Mechanical Engineering DepartmentStanford University
  3. 3.Electrical Engineering DepartmentTampere University of TechnologyTampereFinland

Personalised recommendations