Advertisement

Theoretical and Mathematical Physics

, Volume 78, Issue 1, pp 6–13 | Cite as

Finite-gap solutions of Abelian Toda chain of genus 4 and 5 in elliptic functions

  • A. O. Smirnov
Article

Keywords

Elliptic Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    S. A. Brazovskii, I. E. Dzyaloshinskii, and I. M. Krichever, Zh. Eksp. Teor. Fiz.,83, 389 (1982).Google Scholar
  2. 2.
    I. E. Dzyaloshinskii and I. M. Krichever, Zh. Eksp. Teor. Fiz.,85, 1771 (1983).Google Scholar
  3. 3.
    I. M. Krichever, in: Modern Problems of Mathematics, (Reviews of Science and Technology), Vol. 23 [in Russian], VINITI, Moscow (1983), p. 79.Google Scholar
  4. 4.
    I. M. Krichever, Usp. Mat. Nauk,33, 215 (1978).Google Scholar
  5. 5.
    V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, The Theory of Solitons: The Inverse Scattering Method [in Russian], Nauka, Moscow (1980).Google Scholar
  6. 6.
    S. A. Brazovskii and S. I. Matveenko, Zh. Eksp. Teor. Fiz.,81, 1542 (1981).Google Scholar
  7. 7.
    S. A. Brazovskii, N. N. Kirova, and S. I. Matveenko, Zh. Eksp. Teor. Fiz.,86, 743 (1984).Google Scholar
  8. 8.
    S. I. Matveenko, Zh. Eksp. Teor. Fiz.,86, 1803 (1984).Google Scholar
  9. 9.
    E. D. Belokolos, A. I. Bobenko, V. B. Matveev, and V. Z. Énol'skii, Usp. Mat. Nauk,41, 3 (1986).Google Scholar
  10. 10.
    I. M. Krichever, Funktsional. Analiz i Ego Prilozhen.,14, 45 (1980).Google Scholar
  11. 11.
    M. V. Babich, A. I. Bobenko, and V. B. Matveev, Izv. Akad. Nauk SSSR, Ser. Mat.,49, 511 (1985).Google Scholar
  12. 12.
    E. D. Belokolos and V. Z. Énol'skii, Teor. Mat. Fiz.,53, 271 (1982).Google Scholar
  13. 13.
    A. Kuribayashi, Bull. Fac. Sci. Eng. Chuo Univ.,15, 1 (1972).Google Scholar
  14. 14.
    J. Schiller, Michigan Math. J,15, 283 (1968).Google Scholar
  15. 15.
    É. I. Zverovich, Usp. Mat. Nauk,26, 113 (1971).Google Scholar
  16. 16.
    B. A. Dubrovin, “Geometry of Abelian manifolds and Riemann surfaces and nonlinear equations,” Doctoral Dissertation, State University, Moscow (1984).Google Scholar
  17. 17.
    J. Igusa, Grund. Math. Wiss., Springer (1972), Vol. 194.Google Scholar
  18. 18.
    V. B. Matveev and A. O. Smirnov, Dokl. Akad. Nauk SSSR,293, 78 (1987).Google Scholar
  19. 19.
    A. O. Smirnov, Mat. Sb.,133, 382 (1987).Google Scholar
  20. 20.
    B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, Usp. Mat. Nauk,31, 55 (1976).Google Scholar
  21. 21.
    J. D. Fay, Lecture Notes in Math., Springer (1973), Vol. 352.Google Scholar
  22. 22.
    A. I. Bobenko, Funktsional. Analiz i Ego Prilozhen.,19, 16 (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • A. O. Smirnov

There are no affiliations available

Personalised recommendations