Advertisement

Journal of Statistical Physics

, Volume 56, Issue 5–6, pp 911–929 | Cite as

Linear relaxation times of stochastic processes driven by non-Gaussian noises

  • J. Casademunt
  • J. M. Sancho
Articles

Abstract

The linear relaxation time (LRT) associated with steady-state correlation functions is studied for Langevin equations with non-Gaussian noises: dichotomous Markov noise and Poissonian white shot noise. Exact results for arbitrary models are obtained and compared with results for Gaussian noises. Some general features of LRTs are discussed. The concept of dynamic effective diffusion is introduced and the existence of an optimal effective Fokker-Planck approximation is discussed. Explicit examples for prototype models are presented and briefly compared with the analogs for Gaussian noises.

Key words

Linear relaxation time Gaussian white noise white shot noise dichotomous Markov noise Ornstein-Uhlenbeck noise dynamic (static) effective diffusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. G. Van Kampen,Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1983).Google Scholar
  2. 2.
    C. W. Gardiner,Handbook of Stochastic Methods for Physics, Chemistry and Natural Sciences (Springer-Verlag, Berlin, 1983).Google Scholar
  3. 3.
    F. Moss and P. V. E. McClintock,Noise in Nonlinear Dynamical Systems (Cambridge University Press, Cambridge, 1989).Google Scholar
  4. 4.
    W. Horsthemke and R. Lefever,Noise-Induced Transitions (Springer-Verlag, Berlin, 1984).Google Scholar
  5. 5.
    S. Grossman,Phys. Rev. A 17:1123 (1978).Google Scholar
  6. 6.
    H. Fujisaka and S. Grossman,Z. Physik B 43:69 (1981).Google Scholar
  7. 7.
    S. Faetti, P. Grigolini, and F. Marchesoni,Z. Physik B 47:353 (1982).Google Scholar
  8. 8.
    A. Hernández-Machado, M. San Miguel, and J. M. Sancho,Phys. Rev. A 29:3388 (1984).Google Scholar
  9. 9.
    H. Risken,The Fokker-Planck Equation (Springer-Verlag, Berlin, 1984).Google Scholar
  10. 10.
    W. Nadler and K. Schulten,J. Chem. Phys. 82:151 (1985).Google Scholar
  11. 11.
    W. Nadler and K. Schulten,Z. Physik B 59:53 (1985).Google Scholar
  12. 12.
    P. Jung and H. Risken,Z. Physik B 59:469 (1985).Google Scholar
  13. 13.
    K. Binder,Phys. Rev. B 8:3423 (1973).Google Scholar
  14. 14.
    Z. Racz,Phys. Rev. B 13:2631 (1976).Google Scholar
  15. 15.
    J. Casademunt, J. I. Jimenez-Aquino, and J. M. Sancho,Physica A 156:628 (1989).Google Scholar
  16. 16.
    J. Casademunt and J. M. Sancho,Phys. Rev. A 39:4915 (1989).Google Scholar
  17. 17.
    M. San Miguel, L. Pesquera, M. A. Rodríguez, and A. Hernández-Machado,Phys. Rev. A 35:208 (1987).Google Scholar
  18. 18.
    J. Casademunt, R. Mannella, P. V. E. McClintock, F. E. Moss, and J. M. Sancho,Phys. Rev. A 35:5183 (1987).Google Scholar
  19. 19.
    J. Casademunt and A. Hernández-Machado, Correlation functions near instabilities in systems driven by parametric noise,Z. Phys. B (1989), to appear.Google Scholar
  20. 20.
    J. M. Sancho and M. San Miguel,Prog. Theor. Phys. 69:1085 (1983).Google Scholar
  21. 21.
    F. Sagués, M. San Miguel, and J. M. Sancho,Z. Physik B 55:269 (1984).Google Scholar
  22. 22.
    C. Van den Broeck and P. Hanggi,Phys. Rev. A 30:2730 (1984).Google Scholar
  23. 23.
    C. Van den Broeck,J. Stat. Phys. 31:467 (1983).Google Scholar
  24. 24.
    M. A. Rodrīguez, L. Pesquera, M. San Miguel, and J. M. Sancho,J. Stat. Phys. 40:669 (1985).Google Scholar
  25. 25.
    J. M. Sancho, M. San Miguel, S. Katz, and J. D. Gunton,Phys. Rev. A 26:1589 (1982).Google Scholar
  26. 26.
    J. Casademunt and J. M. Sancho,Phys. Lett. A 123:271 (1987).Google Scholar
  27. 27.
    M. Suzuki, K. Kaneko, and F. Sasagawa,Prog. Theor. Phys. 65:828 (1981).Google Scholar
  28. 28.
    J. M. Sancho,J. Math. Phys. 25:354 (1984).Google Scholar
  29. 29.
    J. Masoliver, B. West, and K. Lindenberg,Phys. Rev. A 35:3086 (1987).Google Scholar
  30. 30.
    J. Casademunt, Dynamic characterization of relaxation processes in the presence of fluctuations, Ph.D. thesis, University of Barcelona (1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • J. Casademunt
    • 1
  • J. M. Sancho
    • 1
  1. 1.Departament d'Estructura i Constituents de la Matèria, Facultat de FísicaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations