Theoretical and Mathematical Physics

, Volume 100, Issue 2, pp 959–962 | Cite as

Vector-matrix generalizations of classical integrable equations

  • S. I. Svinolupov
  • V. V. Sokolov
Article

Abstract

Some vector-matrix generalizations, both known and new, for well-known integrable equations are presented. All of them possess higher symmetries and conservation laws.

Keywords

Integrable Equation High Symmetry Classical Integrable Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Athorne and A. P. Fordy,J. Phys., A19 (1986).Google Scholar
  2. 2.
    S. I. Svinolupov,Teor. Mat. Fiz.,87, 391 (1991).Google Scholar
  3. 3.
    É. B. Vinberg,Tr. MMO, No. 12, 340 (1963).Google Scholar
  4. 4.
    S. I. Svinolupov,Phys. Lett.,135A, 32 (1989).Google Scholar
  5. 5.
    V. V. Sokolov,Usp. Mat. Nauk,43, 133 (1988).Google Scholar
  6. 6.
    M. A. Semenov-Tyan-Shanskii and L. D. Faddeev,Vestn. Leningr. Univ.,3, 81 (1977).Google Scholar
  7. 7.
    A. P. Fordy and P. P. Kulish,Commun. Math. Phys.,89, 427 (1983).Google Scholar
  8. 8.
    A. P. Fordy,J. Phys., A17, 1235 (1984).Google Scholar
  9. 9.
    S. I. Svinolupov,Commun. Math. Phys.,143, 559 (1992).Google Scholar
  10. 10.
    S. I. Svinolupov,Funktsional. Analiz i Ego Prilozhen.,27, 27 (1993).Google Scholar
  11. 11.
    M. Koecher,Univ. of Minnesota Lecture Notes (1969).Google Scholar
  12. 12.
    O. Loos,Symmetric Spaces, New York (1969).Google Scholar
  13. 13.
    O. Loos,Lecture Notes in Mathematics, Vol. 460, Springer-Verlag, Berlin (1975, p. 218.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • S. I. Svinolupov
  • V. V. Sokolov

There are no affiliations available

Personalised recommendations