Advertisement

Theoretical and Mathematical Physics

, Volume 53, Issue 2, pp 1092–1099 | Cite as

Darboux transformations for non-Abelian and nonlocal equations of the Toda chain type

  • M. A. Sall'
Article

Keywords

Darboux Transformation Chain Type Toda Chain Nonlocal Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    J. Darboux, C. R. Acad. Sci.,94, 1456 (1882).Google Scholar
  2. 2.
    H. Wahlquist, Lect. Notes in Math.,515, 162 (1972).Google Scholar
  3. 3.
    V. B. Matveev, Lett. Math. Phys.,3, 217 (1979).Google Scholar
  4. 4.
    V. B. Matveev, Lett. Math. Phys.,3, 503 (1979).Google Scholar
  5. 5.
    V. B. Matveev, Lett. Math. Phys.,3, 213 (1979).Google Scholar
  6. 6.
    V. B. Matveev, in: Proc. Int. Conf. RCP, 264, Paris, Hermann (1979).Google Scholar
  7. 7.
    V. B. Matveev and M. A. Salle, Lett. Math. Phys.,3, 425 (1979).Google Scholar
  8. 8.
    V. B. Matveev and M. A. Sall', Zap. Nauchni. Seminarov LOMI,101, 111 (1981).Google Scholar
  9. 9.
    V. B. Matveev and M. A. Sall', Dokl. Akad. Nauk SSSR,261, 533 (1981).Google Scholar
  10. 10.
    A. V. Mikhailov, Pis'ma Zh. Eksp. Teor. Fiz.,30, 443 (1979).Google Scholar
  11. 11.
    B. A. Dubrovin, Usp. Mat. Nauk,36, 11 (1981).Google Scholar
  12. 12.
    V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, The Theory of Solitons: The Inverse Problem Method [in Russian], Nauka, Moscow (1980).Google Scholar
  13. 13.
    R. Hirota, J. Phys. Soc. Jpn.,35, 289 (1973).Google Scholar
  14. 14.
    M. J. Ablowitz and J. F. Ladik, J. Math. Phys.,14, 594 (1973).Google Scholar
  15. 15.
    A. N. Leznov and M. V. Saveliev, Lett. Math. Phys.,3, 489 (1979).Google Scholar
  16. 16.
    A. N. Leznov, M. V. Saveliev, and V. G. Smirnov, “Explicit solution to two-dimensionalized Volterra equation,” Preprint 80-13 [in English], Institute of High Energy Physics, Serpukhov (1981).Google Scholar
  17. 17.
    P. Hartman, Ordinary Differential Equations, Wiley, New York (1964) (Russian translation published by Mir, Moscow (1970).Google Scholar
  18. 18.
    I. M. Krichever, Usp. Mat. Nauk,33, 215 (1978).Google Scholar
  19. 19.
    M. A. Sall' and V. B. Matveev, Probl. Mat. Fiz.,9, 128 (1979).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • M. A. Sall'

There are no affiliations available

Personalised recommendations