Skip to main content
Log in

Antibiotic properties of porcupine quills

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Porcupine quills possess antibiotic properties. The antibiotic activity is associated with free fatty acids (but not neutral lipids) coating the quills. Extracts of quill fatty acids strongly inhibited the growth of six grampositive bacterial strains. No growth inhibition was observed against four gram-negative strains. Free fatty acids made up 18.6% of total quill lipids in samples collected in the summer, and 5.5% of total lipid in samples collected in the winter. The fatty acids were separated and identified (as the methyl esters) by gas-liquid chromatography and mass spectroscopy. Major components of a complex mixture included 14-methylpentadecanoic, 9-hexadecenoic, hexadecanoic, and 9-octadecenoic acids. It is suggested that porcupines benefit from the quill fatty acids: evidence from healed fractures of major skeletal components (35.1% incidence in 37 skeletons examined) suggests that porcupines fall relatively frequently from trees. Quill antibiotics may limit self-injury suffered in such falls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bore, P., Goetz, N., Gatand, P., andTourenq, L. 1982. Evolution in the composition of human skin surface lipids during their accumulation on scalp and hair.Int. J. Cosmet. Sci. 4:39–52.

    Google Scholar 

  • Bulstrode, C., King, J., andRoper, B. 1986. What happens to wild animals with broken bones?Lancet 1:29–31.

    Google Scholar 

  • Clarke, M.R., andGlander, K.E. 1984. Female reproductive success in a group of free-ranging howling monkeys (Alouatta palliata) in Costa Rica, pp. 111–126,in M.F. Small (ed.). Female Primates: Studies by Women Primatologists. Alan R. Liss, New York.

    Google Scholar 

  • Curtis, J.D., andKozicky, E.L. 1944. Observations on the eastern porcupine.J. Mammal. 25:137–146.

    Google Scholar 

  • Dodge, W.E. 1967. The biology and life history of the porcupine (Erethiwn dorsatum) in western Massachusetts. Ph.D. thesis. University of Massachusetts, Amherst.

    Google Scholar 

  • Earle, K.V. 1940. Pathological effects of two West Indian echinoderms.Trans. R. Soc. Trop. Med. Hyg. 33:447–452.

    Google Scholar 

  • Earle, K.V. 1941. Echinoderm injuries in Nauru.Med. J. Aust. 2:265–266.

    Google Scholar 

  • Earle, R.D., andKramm, K.R. 1980. Techniques of age determination in the Canadian porcupine.J. Wildl. Manage. 44:413–419.

    Google Scholar 

  • Esplin, D.W. 1970. Antiseptics and disinfectants; fungicides; ecto-parasitocides, pp. 1032–1066,in L.S. Goodman and A. Gilman (eds.). The Pharmacological Basis of Therapeutics, 4th ed. Macmillan, New York.

    Google Scholar 

  • Glassman, H.N. 1948. Surface-active agents and their application in bacteriology.Bacterial. Rev. 12:105–148.

    Google Scholar 

  • Gorbach, 1974. Anaerobic infections III.N. Engl. J. Med. 290:1289–1294.

    Google Scholar 

  • Isenberg, H.D., andD'amato, R.S. 1985. Indigenous and pathogenic microorganisms of humans, pp. 24–35,in E.H. Lennette (ed.). Manual of Clinical Microbiology, 4th ed. American Society of Microbiologists, Washington, D.C.

    Google Scholar 

  • Kano, T. 1984. Observations of physical abnormalities among the wild bonobos (Pan paniscus) of Wamba, Zaire.Am. J. Phys. Anthropol. 63:1–11.

    Google Scholar 

  • Lindholm, J.S., McCormick, J.M., Colton, S.W., VI, andDowning, D.T. 1981. Variation of skin surface lipid composition among mammals.Comp. Biochem. Physiol. 69B:75–78.

    Google Scholar 

  • Lotze, J.H., andAnderson, S. 1979.Procyon lotor. Mammal. Species 119:1–8.

    Google Scholar 

  • Marples, R.R., Kligman, A.M., Lantis, L.A., andDowning, D.T. 1970. The role of the aerobic microflora in the genesis of fatty acids in human surface lipids.J. Invest. Dermatol. 55:173–178.

    Google Scholar 

  • Marshall, N.H. 1951. Accidental death of a porcupine.J. Mammal. 32:221.

    Google Scholar 

  • Maser, C., andRohweder, R.S. 1983. Winter food habits of cougars from northeastern Oregon.Great Basin Nat. 43:425–428.

    Google Scholar 

  • Maser, C., Mate, B.R., Franklin, J.F., andDyrness, C.T. 1981. Natural history of Oregon coast mammals. USDA, Forestry Service Gen. Tech. Report PNW-133. Pacific Northwest Forest and Range Exp. Stn., Portland, Oregon.

    Google Scholar 

  • Nicolaides, N. 1974. Skin lipids: Their biochemical uniqueness.Science 186:19–26.

    Google Scholar 

  • Odham, G., andStenhagen, E. 1972. Fatty acids, pp. 211–249,in G.R. Waller (ed.). Biochemical Applications of Mass Spectroscopy. Wiley-Interscience, New York.

    Google Scholar 

  • Roze, U. 1985. How to select, climb, and eat a tree.Nat. Hist. 94(5):62–70.

    Google Scholar 

  • Roze, U. 1987. Denning and winter range in the porcupine.Can. J. Zool. 65:981–986.

    Google Scholar 

  • Ryhage, R., andStenhagen, E. 1960. Mass Spectroscopy of Lipids.J. Lipid Res. 1:363–381.

    Google Scholar 

  • Sauer, G.C. 1980. Manual of Skin Diseases, 4th ed. JB Lippincott, Philadelphia.

    Google Scholar 

  • Schultz, A.M. 1956. The occurrence and frequency of pathological and teratological conditions and of twinning among nonhuman primates.Primatologia 1:965–1014.

    Google Scholar 

  • Shadle, A.R. 1947. Porcupine spine penetration.J. Mammal. 28:180–181.

    Google Scholar 

  • Shadle, A.R. 1955. Effects of porcupine quills in humans.Am. Nat. 89:47–49.

    Google Scholar 

  • Sherris, J.C. 1984a. Normal microbial flora, pp. 50–58,in J.C. Sherris (ed.). Medical Microbiology. Elsevier, New York.

    Google Scholar 

  • Sherris, J.C. 1984b. Skin and wound infections, pp. 555–561,in J.C. Sherris (ed.). Medical Microbiology. Elsevier, New York.

    Google Scholar 

  • Sherris, J.C., andRay, C.G. 1984. Pathogenesis of infection: Initial defenses, infectivity, virulence, and immune response, pp. 59–74,in J.C. Sherris (ed.). Medical Microbiology. Elsevier, New York.

    Google Scholar 

  • Sokal, R.R., andRohlf, F.J. 1981. Biometry, 2nd ed. W.H. Freeman, New York.

    Google Scholar 

  • Stanier, R.Y., Adelberg, E.A., andIngraham, J.L. 1976. The Microbial World, 4th ed. Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Strickland, M.A., Douglas, C.W., Nowak, M., andHunziger, N.P. 1982. Fisher, pp. 586–598,in J.A. Chapman and G.A. Feldhamer (eds.). Wild Animals of North America. Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • Stuewer, F.W. 1943. Raccoons: Their habits and management in Michigan.Ecol. Monogr. 13:203–237.

    Google Scholar 

  • Sutton, J.F. 1972. Notes on skeletal variation, tooth replacement and cranial closure of the porcupine (Erethizon dorsatum).Tulane Stud. Zool. Bot. 17:56–62.

    Google Scholar 

  • Urban, D. 1970. Raccoon populations, movement patterns, and predation on a managed waterfowl marsh.J. Wildl. Manage. 34:372–382.

    Google Scholar 

  • Vincent, J.F.W., andOwers, P. 1986. Mechanical design of hedgehog spines and porcupine quills.J. Zool. (London) 210:55–75.

    Google Scholar 

  • Wyss, O., Ludwig, B.J., andJoiner, R.B. 1945. The fungistatic and fungicidal action of fatty acids and related compounds.Arch. Biochem. 7:415–425.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roze, U., Locke, D.C. & Vatakis, N. Antibiotic properties of porcupine quills. J Chem Ecol 16, 725–734 (1990). https://doi.org/10.1007/BF01016483

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01016483

Key words

Navigation