Theoretical and Mathematical Physics

, Volume 86, Issue 2, pp 138–143 | Cite as

Types of N=2 superconformal transformations

  • S. A. Duplii


Superconformal Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    M. Ademollo, L. Brink, A. D'Adda, et al., Nucl. Phys. B,111, 77 (1976).Google Scholar
  2. 2.
    D. Gepner, “Lectures on N=2 string theory,” Preprint PUPT-1121, J. Henry Labs., Princeton (1989).Google Scholar
  3. 3.
    C. Hull and E. Witten, Phys. Lett. B,160, 398 (1985).Google Scholar
  4. 4.
    P. Di Vecchia, J. L. Petersen, and H. B. Zheng, Phys. Lett. B,162, 327 (1985).Google Scholar
  5. 5.
    A. B. Zamolodchikov and V. A. Fateev, Zh. Eksp. Teor. Fiz.,90, 1553 (1986).Google Scholar
  6. 6.
    A. M. Polyakov, Phys. Lett., No. 2, 207 (1981).Google Scholar
  7. 7.
    M. A. Baranov, I. V. Frolov, and A. S. Shvarts, Teor. Mat. Fiz.,79, 241 (1989).Google Scholar
  8. 8.
    M. A. Baranov, I. V. Frolov, and A. S. Shvarts, Teor. Mat. Fiz.,70, 92 (1987).Google Scholar
  9. 9.
    A. A. Rosly, A. S. Schwarz, and A. A. Voronov, Commun. Math. Phys.,119, 129 (1988).Google Scholar
  10. 10.
    V. S. Vladimirov and I. V. Volovich, Teor. Mat. Fiz.,59, 3 (1984).Google Scholar
  11. 11.
    J. J. Atick, J. M. Rabin, and A. Sen, Nucl. Phys. B,299, 279 (1988).Google Scholar
  12. 12.
    M. Yu and H. B. Zheng, Nucl. Phys. B,288, 275 (1987).Google Scholar
  13. 13.
    J. D. Cohn, Nucl. Phys. B,284, 349 (1987).Google Scholar
  14. 14.
    S. N. Dolgikh, A. A. Rosly, and A. S. Schwarz, “Supermoduli spaces,” Preprint IC/89/210, ICTP, Irieste (1989).Google Scholar
  15. 15.
    K. Schoutens, Nucl. Phys. B,295, 634 (1988).Google Scholar
  16. 16.
    G. Falqui and C. Reina, “N=2 super-Riemann surfaces and algebraic geometry,” Preprint S. I. S. S. A. 47FM, ISAS, Trieste (1989).Google Scholar
  17. 17.
    E. B. Kiritsis, Phys. Rev. D,36, 3048 (1987); E. Melzer, J. Math. Phys.,29, 1555 (1988).Google Scholar
  18. 18.
    S. A. Duplii, Probl. Yad. Fiz. i Kosmich. Luchei,33, 22 (1990).Google Scholar
  19. 19.
    J. M. Rabin and L. Crane, Commun. Math. Phys.,102, 123 (1985).Google Scholar
  20. 20.
    M. A. Baranov, Yu. I. Manin, I. V. Frolov, and A. S. Shvarts, Yad. Fiz.,43, 1053 (1986).Google Scholar
  21. 21.
    H. Minc, Permanents, Addison-Wesley, Reading, Mass. (1978).Google Scholar
  22. 22.
    E. S. Lyapin, Semigroups [in Russian], Nauka, Moscow (1960).Google Scholar
  23. 23.
    N. B. Backhouse and A. G. Fellouris, J. Math. Phys.,26, 1146 (1985).Google Scholar
  24. 24.
    F. A. Berezin, Introduction to Algebra and Analysis with Anticommuting Variables [in Russian], Moscow State University, Moscow (1983).Google Scholar
  25. 25.
    L. Hodgkin, Lett. Math. Phys.,14, 47 (1987).Google Scholar
  26. 26.
    L. Crane and J. M. Rabin, Commun. Math. Phys.,113, 601 (1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • S. A. Duplii

There are no affiliations available

Personalised recommendations