Theoretical and Mathematical Physics

, Volume 99, Issue 2, pp 571–582 | Cite as

Generalized conditional symmetries and exact solutions of non-integrable equations

  • A. S. Fokas
  • Q. M. Liu


We introduce the concept of a generalized conditional symmetry. This concept provides an algorithm for constructing physically important exact solutions of non-integrable equations. Examples include 2-shock and 2-soliton solutions. The existence of such exact solutions for non-integrable equations can be traced back to the relation of these equations with integrable ones. In this sense these exact solutions are remnants of integrability.


Exact Solution Conditional Symmetry Generalize Conditional Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. J. Ablowitz and A. Zeppetella, Bull. Math. Biol. 41 (1979) 835.Google Scholar
  2. [2]
    R. Fitzhugh, Biophys. J. 1 (1961) 445; J. S Nagumo, S. Arimoto, and S. Yoshizawa, Proc. IRE 50 (1962) 2061; A. Kolmogorov, I. Petrovsky, and N. Piscounov, Bull. Univ. Etat. Moscou (Ser. Int.) A1 (1937) 1; A. C. Newell and J. A. Whitehead, J. Fluid Mech. 38 (1969) 239.Google Scholar
  3. [3]
    J. D. Cole, Quart. Appl. Math. 9 (1951) 225; E. Hopf, Comm. Pure Appl. Math. 3 (1950) 201.Google Scholar
  4. [4]
    T. Kawahara and M. Tanaka, Phys. Lett. 97A (1983) 311.Google Scholar
  5. [5]
    J. Satsuma, Exact solutions of Burgers equation with reaction terms, preprint, 1987.Google Scholar
  6. [6]
    R. Conte, Phys. Lett. 134A (1988) 100; F. Cariello and M. Tabor, Physica 39D (1989) 77; P. G. Estévez and P. R. Gordoa, J. Phys. 23A (1990) 4831; Z. Chen and B. Guo, IMA J. Appl. Math. 48 (1992) 645.Google Scholar
  7. [7]
    M. C. Nucci and P. A. Clarkson, Phys. Lett. 164A (1992) 49–56.Google Scholar
  8. [8]
    G. W. Bluman and J. D. Cole, J. Math. Mech. 18 (1969) 1025.Google Scholar
  9. [9]
    P. J. Olver and P. Rosenau, Phys. Lett. 114A (1986) 107; SIAM J. Appl. Math 47 (1987) 263.Google Scholar
  10. [10]
    P. A. Clarkson and P. Winternitz, Physica D 49 (1991) 257.Google Scholar
  11. [11]
    N. A. Kudryashov, Phys. Lett. 169A (1992) 237.Google Scholar
  12. [12]
    I. M. Gel'fand and L. A. Dikii, Uspeki Matem. Nauk 30 (1975) 67.Google Scholar
  13. [13]
    R. L. Anderson and N. H. Ibragimov,Lie-Bäcklund Transformations in Applications, SIAM Stud. Appl. Math. No. 1, Philadelphia, 1979.Google Scholar
  14. [14]
    A. S. Fokas and I. M. Gel'fand, Bi-hamiltonian structures and integrability, inImportant Developments in Soliton Theory, ed. by A. S. Fokas and V. E. Zakharov, Springer-Verlag, 1993.Google Scholar
  15. [15]
    L. V. Ovsiannikov,Group Analysis of Differential Equations, Academic Press, New York, 1982.Google Scholar
  16. [16]
    E. L. Ince,Ordinary Differential Equations, Longmans and Green, London-New York 1926.Google Scholar
  17. [17]
    A. S. Fokas, J. Math. Phys. 21 (1980) 1318; Stud. Appl. Math. 77 (1987) 253.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • A. S. Fokas
  • Q. M. Liu

There are no affiliations available

Personalised recommendations