Advertisement

Theoretical and Mathematical Physics

, Volume 80, Issue 2, pp 829–838 | Cite as

Quantization of bosonic string field and infinite-dimensional pseudodifferential operators. Fixed gauge

  • A. Yu. Khrennikov
Article
  • 45 Downloads

Keywords

Pseudodifferential Operator Bosonic String 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. Yu. Khrennikov, Usp. Mat. Nauk,43, 87 (1988); Teor. Mat. Fiz.,73, 420 (1987); Sibirsk. Matem. Zh.,29, 180 (1988); Diff. Equations,21, 346 (1985);22, 1596 (1986);24, 2144 (1988);25, 241 (1989); Dokl. Akad. Nauk SSSR,267, 1313 (1982); Matem. Zametki,37, 734 (1985); Paper No. 5889-84 Deposited at VINITI [in Russian] (1984).Google Scholar
  2. 2.
    A. Yu. Khrennikov, Teor. Mat. Fiz.,66, 339 (1986); Izv. Akad. Nauk SSSR Ser. Mat.,51, 48 (1987).Google Scholar
  3. 3.
    P. Goddard, J. Goldstone, C. Rebbi, and C. Thorn, Nucl. Phys. B,56, 109 (1973).Google Scholar
  4. 4.
    M. Kaku and J. Kikkawa, Phys. Rev. D,10, 1110 (1974).Google Scholar
  5. 5.
    I. E. Segal, Mathematical Problems of Relativistic Physics, AMS, Providence, R. I. (1963).Google Scholar
  6. 6.
    H. Weyl, The Theory of Groups and Quantum Mechanics, Dover Publications, New York.Google Scholar
  7. 7.
    A. Yu. Khrennikov, Usp. Mat. Nauk, No. 1, 163 (1984); Tr. MMO,49, 113 (1986); Abh. Acad. Wiss. DDR, No. 2, 112 (1984).Google Scholar
  8. 8.
    F. A. Berezin, Tr. MMO,17, 117 (1968).Google Scholar
  9. 9.
    O. G. Smolyanov, Dokl. Akad. Nauk SSSR,263, 558 (1982).Google Scholar
  10. 10.
    N. N. Bogolyubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields, 3rd ed., Wiley, New York (1980).Google Scholar
  11. 11.
    C. Itzykson and J.-B. Zuber, Quantum Field Theory, McGraw-Hill, New York (1980).Google Scholar
  12. 12.
    P. A. M. Dirac, Lectures on Quantum Field Theory, Belfer Graduate School of Science, Yeshiva University, New York (1966).Google Scholar
  13. 13.
    H. H. Schaeffer, Topological Vector Spaces, MacMillan, New York (1966).Google Scholar
  14. 14.
    J. Glimm and A. Jaffe, Quantum Physics, New York (1981).Google Scholar
  15. 15.
    I. Ya. Aref'eva and I. V. Volovich, “General relativity invariance and string field theory,” Preprint IC/87/61, ICTP, Trieste (1987).Google Scholar
  16. 16.
    V. S. Vladimirov and I. V. Volovich, Teor. Mat. Fiz.,59, 3 (1984).Google Scholar
  17. 17.
    I. V. Volovich, “Number theory as the ultimate physical theory,” Preprint CERN-TH. 4981/87, CERN, Geneva (1987).Google Scholar
  18. 18.
    V. S. Vladimirov and I. V. Volovich, “p-adic quantum mechanics,” Preprint SMI-01/88, MI, Moscow (1988); I. V. Volovich, Lett. Math. Phys.,16, 61 (1988); I. Ya. Aref'eva, B. G. Dragovic, and I. V. Volovich, “p-adic superstrings,” Preprint CERN-TH. 5089/88, CERN, Geneva (1988).Google Scholar
  19. 19.
    D. Finkelstein, Phys. Rev.,184, 1261 (1969).Google Scholar
  20. 20.
    E. C. Zeeman, J. Math. Phys.,5, 490 (1964); S. W. Hawking, A. R. King, and McCarthy, J. Math. Phys.,17, 174 (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • A. Yu. Khrennikov

There are no affiliations available

Personalised recommendations