Journal of Applied Electrochemistry

, Volume 18, Issue 6, pp 839–848

Electrochemistry of anodic F2 evolution at carbon electrodes: Bubble adherence effects in the kinetics at rotating cone electrodes

  • Lijun Bai
  • B. E. Conway
Papers

Abstract

Fluorine-evolving carbon anodes exhibit unusually high overvoltages characterized also by remarkably large Tafel slopes having values 0.4–0.8 V per decade of current density change. Also, at high current densities, a so-called ‘anode effect’ associated with a type of passivation sets in. Experiments are described which aim to distinguish high polarization arising from an intrinsically large Tafel slope, generated by a non-ohmic charge transfer barrier layer effect due to ‘CF’ film formation, from effects due to difficulties of F2 bubble detechment and F2 gas film formation at the ‘CF’ film. Steady state polarization measurements have been made at a rotating carbon cone electrode from which F2 bubbles, which otherwise remain attached to the electrode and block access to the electrolyte, can be spun away. At the rotated electrode, at low and intermediate current densities, linear Tafel behaviour is still observed but with high slopes associated with the barrier layer film effect. At higher current densities an ‘anode effect’, associated with the F2 gas film, is developed, leading to a type of passivation of the electrode. The two sources of unusually high polarization in the F2 evolution reaction at carbon are not independent as it is also the formation of the ‘CF’ film that causes difficulties in gas bubble detachment owing to the lyophobic properties of the fluorinated C/F2/KF·2HF interface. Polishing effects confirm this conclusion.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Chemla, D. Devilliers and F. Lantelm, Proceedings of the First International Symposium on Molten Salt Chemistry and Technology, Kyoto, Japan, April, 1983; see also D. Devilliers, F. Lantelm and M. Chemla,J. Chim. Phys. 80 (1983) 267.Google Scholar
  2. [2]
    H. Imoto, T. Nakajima and N. Watanabe,Bull. Chem. Soc. Jap. 48 (1975) 1633; see also P. Cadman, J. D. Scott and J. M. Thomas,Surface Sci. 15 (1977) 75.Google Scholar
  3. [3]
    A. J. Rudge, in ‘Industrial Electrochemical Processes’ (edited by A. T. Kuhn), Elsevier, Amsterdam (1971) Chap. 1.Google Scholar
  4. [4]
    N. Watanabe, M. Ishii and S. Yoshizawa,J. Electrochem. Soc. Jap. 29 (1961) E180; see also N. Watanabe, ‘Proc. Electrochem. Soc., Electrochemistry of Carbon’ (1984) p. 536.Google Scholar
  5. [5]
    A. J. Arvia and J. B. de Cusminsky,Trans. Faraday Soc. 58 (1962) 1019.Google Scholar
  6. [6]
    N. Watanabe, M. Inoue and S. Yoshizawa,J. Electrochem. Soc. Jap. 31 (1963) 168.Google Scholar
  7. [7]
    D. M. Novak and P. T. Hough,J. Electroanal. Chem. 144 (1983) 121.Google Scholar
  8. [8]
    L. Bai and B. E. Conway, in course of publication (1988).Google Scholar
  9. [9]
    J. O'M. Bockris, ‘Modern Aspects of Electrochemistry’ (edited by J. O'M. Bockris), Butterworths, London (1954) Vol. 1, Chap. 4.Google Scholar
  10. [10]
    R. E. Meyer,J. Electrochem. Soc. 107 (1960) 847.Google Scholar
  11. [11]
    U.S. Patent No. 4602985 to Eldorado Resources Ltd (1986).Google Scholar
  12. [12]
    N. Watanabe,J. Fluorine Chem. 22 (1983) 205.Google Scholar
  13. [13]
    M. Chemla, D. Devilliers and F. Lantelme, Ann. Chim. France (1984) 633.Google Scholar
  14. [14]
    D. Devilliers, F. Lantelme and M. Chemla,Electrochim. Acta 31 (1986) 1235.Google Scholar
  15. [15]
    O. R. Brown, B. M. Ikeda and M. J. Wilmott,Electrochim. Acta 32 (1987) 1163.Google Scholar
  16. [16]
    L. Bai and B. E. Conway, Part II of this series, in course of publication; presented at the Conference “Centenary of the Discovery of Fluorine”, Paris, August, 1986.Google Scholar
  17. [17]
    J. S. Clarke and A. T. Kuhn,J. Electroanal. Chem. 85 (1977) 299.Google Scholar
  18. [18]
    B. E. Conway and L. Bai,J. Electroanal. Chem. 198 (1986) 149.Google Scholar
  19. [19]
    E. Kirowa-Eisner and E. Gileadi,J. Electrochem. Soc. 123 (1976) 22.Google Scholar
  20. [20]
    N. Watanabe, S. Matsui and M. Haruta,Denki Kaguku 43 (1975) 638.Google Scholar
  21. [21]
    B. Burrows and R. Jasinski,J. Electrochem. Soc. 115 (1968) 348.Google Scholar
  22. [22]
    H. K. Fredenhagen and O. T. Kreft,Z. Elektrochem. 35 (1929) 670.Google Scholar
  23. [23]
    C. S. Garner and D. M. Yost,J. Am. Chem. Soc. 59 (1937) 2738.Google Scholar
  24. [24]
    J. Kuta and E. Yeager, ‘Techniques of Electrochemistry’ (edited by E. Yeager and A. J. Salkind), John Wiley, New York (1972) Vol. 1, p. 141.Google Scholar
  25. [25]
    M. Sluyters-Rehbach and J. H. Sluyters, in ‘Comprehensive Treatise of Electrochemistry’ (edited by E. Yeager, J. O'M. Bockris, B. E. Conway and S. Sarangaspani), Plenum, New York (1984) Vol. 9, Chap. 4.Google Scholar
  26. [26]
    T. Nakajima, T. Ogawa and N. Watanabe,J. Electrochem. Soc. 134 (1987) 8.Google Scholar
  27. [27]
    Quarterly Report to Eldorado Resources Ltd from Electrochemistry Laboratory, University of Ottawa, March 1987.Google Scholar
  28. [28]
    D. Devilliers, M. Vogler, F. Lantelme and M. Chemla,Analyt. Chim. Acta 153 (1983) 69.Google Scholar
  29. [29]
    J. S. Hammond and N. Winograd, in ‘Comprehensive Treatise of Electrochemistry’ (edited by R. E. White, J. O'M. Bockris, B. E. Conway and E. Yeager), Plenum, New York (1984) Vol. 8.Google Scholar

Copyright information

© Chapman and Hall Ltd 1988

Authors and Affiliations

  • Lijun Bai
    • 1
  • B. E. Conway
    • 1
  1. 1.Chemistry DepartmentUniversity of OttawaOttawaCanada

Personalised recommendations