Advertisement

Theoretical and Mathematical Physics

, Volume 98, Issue 2, pp 107–121 | Cite as

Generalized field quantization and statistics of elementary particles

  • A. B. Govorkov
Article

Abstract

Generalized schemes for the quantization of free fields based on the deformed trilinear relations of Green are investigated. A theorem shows that in reality continuous deformation is impossible. In particular, it is shown that a “small” violation of the ordinary Fermi and Bose statistics is impossible both in the framework of local field theory, corresponding to parastatistics of finite orders, and in the framework of nonlocal field theory, corresponding to infinite statistics. The existence of antiparticles plays a decisive role in establishing the matter case.

Keywords

Field Theory Elementary Particle Generalize Scheme Local Field Decisive Role 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. P. Wigner,Phys. Rev.,77, 711 (1950).Google Scholar
  2. 2.
    H. S. Green,Phys. Rev.,90, 270 (1953).Google Scholar
  3. 3.
    A. B. Govorkov,Teor. Mat. Fiz.,54, 361 (1983).Google Scholar
  4. 4.
    O. W. Greenberg and A. M. L. Messiah,Phys. Rev. B,138, 1155 (1965).Google Scholar
  5. 5.
    Y. Ohnuki and S. Kamefuchi,Quantum Field Theory and Parastatistics, Springer-Verlag, Berlin (1982).Google Scholar
  6. 6.
    A. B. Govorkov,Fiz. Elem. Chastics At. Yadra,14, 1229 (1983).Google Scholar
  7. 7.
    A. B. Govorkov,Teor. Mat. Fiz.,85, 222 (1990).Google Scholar
  8. 8.
    A. B. Govorkov,Nucl. Phys. B,365, 381 (1991).Google Scholar
  9. 9.
    A. B. Govorkov,Phys. Lett. A,137, 7 (1989).Google Scholar
  10. 10.
    K. Fredenhagen,Commun. Math. Phys.,79, 141 (1981).Google Scholar
  11. 11.
    O. W. Greenberg,Phys. Rev. D,43, 4111 (1991);Physica (Utrecht) A,180, 419 (1992).Google Scholar
  12. 12.
    O. W. Greenberg,Phys. Rev. Lett.,64, 705 (1990).Google Scholar
  13. 13.
    W. Pauli,Rev. Mod. Phys.,13, 203 (1941).Google Scholar
  14. 14.
    I. Bialynicki-Birula,Nucl. Phys.,49, 605 (1963).Google Scholar
  15. 15.
    A. Yu. Ignat'ev and V. A. Kuz'min,Yad. Fiz.,46, 786 (1987).Google Scholar
  16. 16.
    O. W. Greenberg and R. N. Mohapatra,Phys. Rev. Lett.,59, 2507 (1987);62, 712 (1989).Google Scholar
  17. 17.
    L. B. Okun,Pis'ma Zh. Eksp. Teor. Fiz.,46, 420 (1987).Google Scholar
  18. 18.
    G. F. Dell'Antonio, O. W. Greenberg, and E. C. G. Sudarshan, in:Group-Theoretical Concepts and Methods in Elementary Particle Physics, Gordon and Breach, New York (1964), p. 403.Google Scholar
  19. 19.
    O. W. Greenberg and A. M. L. Messiah,J. Math. Phys.,6, 500 (1965).Google Scholar
  20. 20.
    S. Doplicher, R. Haag, and J. E. Roberts,Commun. Math. Phys.,23, 199 (1971);35, 49 (1974).Google Scholar
  21. 21.
    D. Buchholz and K. Fredenhagen,Commun. Math. Phys.,84, 1 (1982).Google Scholar
  22. 22.
    M. V. Cougo-Pinto,Phys. Rev. D,46, 858 (1992).Google Scholar
  23. 23.
    A. B. Govorkov,Mod. Phys. Lett. A,7, 2383 (1992).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • A. B. Govorkov

There are no affiliations available

Personalised recommendations