Theoretical and Mathematical Physics

, Volume 97, Issue 3, pp 1386–1392 | Cite as

Effective collision frequency method in the theory of the conductivity of Coulomb systems. II. Strong interion interaction and plasma structure

  • V. B. Bobrov
  • S. A. Triger


The effective collision frequency method developed earlier by the authors for Coulomb systems characterized by strong interion interaction is developed further. An explicit expression is obtained for the effective electron collision frequency on the basis of the exact diagram representation obtained in Part I and the use of the model of a one-component plasma as initial approximation. The description of plasma structure in the corresponding approximation is considered.


Explicit Expression Initial Approximation Collision Frequency Strong Interion Diagram Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. M. Ziman,Philos. Mag.,6, 1013 (1961).Google Scholar
  2. 2.
    N. F. Mott and E. A. Davis,Electronic Processes in Non-Crystalline Materials, Clarendon Press, Oxford (1971).Google Scholar
  3. 3.
    G. Baym,Phys. Rev. A,135, 1691 (1964).Google Scholar
  4. 4.
    M. H. Cohen and J. Lekner,Phys. Rev.,158, 305 (1967).Google Scholar
  5. 5.
    S. A. Triger and N. I. Klyuchnikov,Fiz. Met. Metalloved.,34, 926 (1972).Google Scholar
  6. 6.
    Yu. P. Krasnyi and V. M. Kostenko,Teor. Mat. Fiz.,14, 251 (1973).Google Scholar
  7. 7.
    N. I. Klyuchnikov and S. A. Triger,Teor. Mat. Fiz. 26, 256 (1976);39, 368 (1979).Google Scholar
  8. 8.
    V. E. Fortov and I. T. Yakubov,Physics of Nonideal Plasmas [in Russian], Institute of Chemical Physics, Chernogolovka (1984).Google Scholar
  9. 9.
    N. P. Kovalenko, Yu. P. Krasnyi, and S. A. TrigerStatistical Theory of Liquid Metals [in Russian], Nauka, Moscow (1990).Google Scholar
  10. 10.
    V. B. Bobrov, R. Redmer, G. Repke, and S. A. Triger,Teor. Mat. Fiz.,86, 300, 425 (1991).Google Scholar
  11. 11.
    V. B. Bobrov and S. A. Triger,Dokl. Akad. Nauk SSSR,319, 154 (1991).Google Scholar
  12. 12.
    V. B. Bobrov and S. A. Trigger,J. Phys. A,25, 1 (1992).Google Scholar
  13. 13.
    K. Hoshino, N. Matsuda, and M. Watabe,J. Phys. Soc. Jpn.,59, 2027 (1990).Google Scholar
  14. 14.
    R. Winter and F. Hensel,Phys. Chem. Liq.,20, 1 (1989).Google Scholar
  15. 15.
    M. Baus and J. P. Hansen,Phys. Rep.,59, 1 (1980).Google Scholar
  16. 16.
    S. Ichimaru,Rev. Mod. Phys.,54, 1017 (1982).Google Scholar
  17. 17.
    M. Ross, H. E. DeWitt, and W. B. Hubbard,Phys. Rev. A,24, 1016 (1981).Google Scholar
  18. 18.
    K. N. Khanna and J. L. Bretonnet,Phys. Chem. Liq. 16, 55 (1986).Google Scholar
  19. 19.
    V. B. Bobrov and S. A. Triger,Dokl. Akad. Nauk SSSR,310, 850 (1990).Google Scholar
  20. 20.
    V. B. Bobrov, I. I. Tovstopyat-Nelip, and S. A. Trigger,Physica (Utrecht) A,167, 810 (1990);170, 198 (1990).Google Scholar
  21. 21.
    V. B. Bobrov and S. A. Triger,Teor. Mat. Fiz.,91, 510, (1992).Google Scholar
  22. 22.
    V. I. Perel' and G. M. Éliashberg,Zh. Eksp. Teor. Fiz.,41, 886 (1961).Google Scholar
  23. 23.
    A. M. Bratkovsky,J. Phys.,1, 3453 (1989).Google Scholar
  24. 24.
    V. B. Bobrov, N. I. Klyuchnikov, and S. A. Triger,Teor. Mat. Fiz.,89, 263 (1991);Physica (Utrecht) A,181, 156 (1992).Google Scholar
  25. 25.
    V. B. Bobrov, Yu. P. Vlasov, and S. A. Triger,Teplofiz. Vys. Temp. 30, 1 (1992).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • V. B. Bobrov
  • S. A. Triger

There are no affiliations available

Personalised recommendations