Journal of Statistical Physics

, Volume 36, Issue 1–2, pp 107–143 | Cite as

Tree graph inequalities and critical behavior in percolation models

  • Michael Aizenman
  • Charles M. Newman
Articles

Abstract

Various inequalities are derived and used for the study of the critical behavior in independent percolation models. In particular, we consider the critical exponent γ associated with the expected cluster sizex and the structure of then-site connection probabilities τ=τn(x1,..., xn). It is shown that quite generally γ⩾ 1. The upper critical dimension, above which γ attains the Bethe lattice value 1, is characterized both in terms of the geometry of incipient clusters and a diagramatic convergence condition. For homogeneousd-dimensional lattices with τ(x, y)=O(¦x -y¦−(d−2+η), atp=pc, our criterion shows that γ=1 if η> (6-d)/3. The connectivity functions τn are generally bounded by tree diagrams which involve the two-point function. We conjecture that above the critical dimension the asymptotic behavior of τn, in the critical regime, is actually given by such tree diagrams modified by a nonsingular vertex factor. Other results deal with the exponential decay of the cluster-size distribution and the function τ2(x, y).

Key words

Percolation critical exponents correlation functions connectivity inequalities upper critical dimension cluster size distribution rigorous results 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Aizenman, Geometric Analysis ofφ 4 fields and Ising models. Parts I and II,Commun. Math. Phys. 86:1 (1982).Google Scholar
  2. 2.
    J. Fröhlich, private communication.Google Scholar
  3. 3.
    J. Fröhlich, On the triviality of λφd4 theories and the approach to the critical point ind > 4 dimensions,Nucl. Phys. B200[FS4]:281 (1982).Google Scholar
  4. 4.
    R. Durrett, Some general results concerning the critical exponents of percolation processes, UCLA preprint (1983).Google Scholar
  5. 5.
    P. D. Seymour and D. J. A. Welsh, Percolation probabilities on the square lattice,Ann. Discrete Math. 3:227 (1978); L. Russo, A note on percolation,Z. Wahrsch. Verw. Geb. 43:39 (1978).Google Scholar
  6. 6.
    B. Simon, Correlation inequalities and the decay of correlations in ferromagnets,Commun. Math. Phys. 77:111 (1980).Google Scholar
  7. 7.
    E. H. Lieb, A refinement of Simon's correlation inequality,Commun. Math. Phys. 77:127 (1980).Google Scholar
  8. 8.
    C. Newman and L. Schulman, One dimensional 1/¦x-y¦s percolation models:the existence of a transition fors ⩽ 2, in preparation; M. Aizenman and C. Newman, Discontinuity of the percolation density in one-dimensional 1/¦x-y¦2 percolation models, in preparation.Google Scholar
  9. 9.
    M. Aizenman and R. Graham, On the renormalized coupling constant and the susceptibility in φ44 field theory and Ising model in four dimensions,Nucl. Phys. B225[FS9]:261 (1983).Google Scholar
  10. 10.
    J. Fröhlich, B. Simon, and T. Spencer, Infrared bounds, phase transitions and continuous symmetry breaking,Commun. Math. Phys. 50:79 (1976).Google Scholar
  11. 11.
    G. Toulouse, Perspectives from the theory of phase transitions,Nuovo Cimento B23:234 (1974); A. B. Harris, T. C. Lubensky, W. K. Holcomb, and C. Dasgupta, Renormalization-group approach to percolation problems,Phys. Rev. Lett. 35:327 (1975).Google Scholar
  12. 12.
    F. Fucito and G. Parisi, On the range of validity of the 6 -ε expansion for percolation,J. Phys. A 14:L507 (1981).Google Scholar
  13. 13.
    H. Kesten,Percolation Theory for Mathematicians (Birkhäuser, Boston, 1982).Google Scholar
  14. 14.
    M. Fisher, Critical temperatures of anisotropic Ising lattices, II. General upper bounds,Phys. Rev. 162:480 (1967).Google Scholar
  15. 15.
    C. M. Fortuin and P. W. Kasteleyn, On the random-cluster model, I,Physica 57:536 (1972).Google Scholar
  16. 16.
    S. T. Klein and E. Shamir, An algorithmic method for studying percolation clusters, Stanford Univ. Dept. of Computer Science, Report No. STAN-CS-82-933 (1982).Google Scholar
  17. 17.
    H. Kunz and B. Souillard, Essential singularity in the percolation model,Phys. Rev. Lett. 40:133 (1978).Google Scholar
  18. 18.
    M. Aizenman, F. Delyon, and B. Souillard, Lower bounds on the cluster size distribution,J. Stat. Phys. 23:267(1980).Google Scholar
  19. 19.
    F. Delyon and B. Souillard, private communication.Google Scholar
  20. 20.
    A. D. Sokal, private communication.Google Scholar
  21. 21.
    L. Gross, Decay of correlations in classical lattice models at high temperatures,Commun. Math. Phys. 68:9 (1979).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • Michael Aizenman
    • 1
  • Charles M. Newman
    • 2
  1. 1.Departments of Mathematics and PhysicsRutgers UniversityNew BrunswickNew Jersey
  2. 2.Department of MathematicsUniversity of ArizonaTucson

Personalised recommendations