Journal of Statistical Physics

, Volume 23, Issue 1, pp 27–47 | Cite as

Discovery of closed orbits of dynamical systems with the use of computers

  • Ja. G. Sinai
  • E. B. Vul


In this paper we derive a general criterion which can be used for the discovery with the use of a computer of closed orbits of systems of ordinary differential equations. We apply this criterion to the Lorenz model and show rigorously the existence of a closed orbit for the case under consideration. In a subsequent paper we shall show how the stable manifold of this orbit determines the boundary of the stochastic attractor.

Key words

Poincaré mapping linear system of equations in variations closed orbit attractor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. N. Lorenz,J. Atmos. Sci. 20:130 (1963).Google Scholar
  2. 2.
    M. Henon,Comm. Math. Phys. 50:69 (1976).Google Scholar
  3. 3.
    M. I. Rabinovich,Usp. Fiz. Nauk 125:123 (1978).Google Scholar
  4. 4.
    V. S. Afraimovich, V. V. Bykov, and L. P. Shilnikov,Dok. Akad. Nauk SSSR 234(2):336 (1977).Google Scholar
  5. 5.
    R. Bowen, On Axiom-A Diffeomorphisms, Preprint, University of California, Berkeley (1978).Google Scholar
  6. 6.
    J. M. Ortega and W. C. Rheinboldt,Iterative Solution of Nonlinear Equations in Several Variables (Computer Science and Applied Mathematics; Academic Press, 1970).Google Scholar
  7. 7.
    S. M. Losinsky,Izvestia Vusov, Math. Ser. 5:52 (1958).Google Scholar
  8. 8.
    J. Guckenheimer,Appl. Math. Sci. 19:368 (1976).Google Scholar
  9. 9.
    R. Williams,Lecture Notes in Mathematics, Vol. 615 (1977).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • Ja. G. Sinai
    • 1
  • E. B. Vul
    • 1
  1. 1.Landau Institute of Theoretical PhysicsAcademy of SciencesMoscowUSSR

Personalised recommendations