Advertisement

Journal of Statistical Physics

, Volume 35, Issue 3–4, pp 193–266 | Cite as

Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities

  • George E. Andrews
  • R. J. Baxter
  • P. J. Forrester
Articles

Abstract

The eight-vertex model is equivalent to a “solid-on-solid” (SOS) model, in which an integer heightl i is associated with each sitei of the square lattice. The Boltzmann weights of the model are expressed in terms of elliptic functions of period 2K, and involve a variable parameter η. Here we begin by showing that the hard hexagon model is a special case of this eight-vertex SOS model, in which η=K/5 and the heights are restricted to the range 1⩽li⩽4. We remark that the calculation of the sublattice densities of the hard hexagon model involves the Rogers-Ramanujan and related identities. We then go on to consider a more general eight-vertex SOS model, with η=K/r (r an integer) and 1⩽lir−1. We evaluate the local height probabilities (which are the analogs of the sublattice densities) of this model, and are automatically led to generalizations of the Rogers-Ramanujan and similar identities. The results are put into a form suitable for examining critical behavior, and exponentsβ, α,\(\bar \alpha \) are obtained.

Key words

Statistical mechanics lattice statistics number theory eight-vertex model solid-on-solid model hard hexagon model Rogers-Ramanujan identities 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Fan and F. Y. Wu,Phys. Rev. B 2:723 (1970).Google Scholar
  2. 2.
    R. J. Baxter,Ann Phys. (N.Y.) 70:193 (1972).Google Scholar
  3. 3.
    F. Y. Wu,Phys. Rev. B 4:2312 (1971); L. P. Kadanoff and F. J. Wegner,Phys. Rev. B 4:3989 (1971).Google Scholar
  4. 4.
    R. J. Baxter,J. Phys. C 6:L445 (1973).Google Scholar
  5. 5.
    E. H. Lieb and F. Y. Wu, inPhase Transitions and Critical Phenomena, Vol. 1, C. Domb and M. S. Green, eds. (Academic, London, 1972), pp. 321–490.Google Scholar
  6. 6.
    R. J. Baxter and F. Y. Wu,Austral. J. Phys. 27:357 and 369 (1974).Google Scholar
  7. 7.
    R. J. Baxter and I. G. Enting,J. Phys. A 9:L149 (1976).Google Scholar
  8. 8.
    R. J. Baxter,J. Phys. A,13:L61 (1980).Google Scholar
  9. 9.
    R. J. Baxter,J. Stat. Phys. 26:427 (1981).Google Scholar
  10. 10.
    R. J. Baxter,Exactly Solved Models in Statistical Mechanics (Academic, London, 1982).Google Scholar
  11. 11.
    R. J. Baxter,Ann. Phys. (N.Y.),76:1 (1973).Google Scholar
  12. 12.
    R. J. Baxter,Ann. Phys. (N.Y.),76:25 (1973).Google Scholar
  13. 13.
    R. J. Baxter,Ann. Phys. (N.Y.),76:48 (1973).Google Scholar
  14. 14.
    M. Gaudin,La fonction d'onde de Bethe (Masson, Paris, 1983).Google Scholar
  15. 15.
    B. Gordon,Am. J. Math. 83:393 (1961).Google Scholar
  16. 16.
    G. E. Andrews,The Theory of Partitions (Addison-Wesley, Reading, Massachusetts, 1976).Google Scholar
  17. 17.
    I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series and Products (Academic, New York, 1965).Google Scholar
  18. 18.
    E. T. Whittaker and G. N. Watson,A Course of Modern Analysis (Cambridge University Press, Cambridge, 1950).Google Scholar
  19. 19.
    N. E. Pegg,J. Phys. A 15:L549 (1982).Google Scholar
  20. 20.
    R. J. Baxter and P. A. Pearce,J. Phys. A 15:897 (1982);16:2239 (1983).Google Scholar
  21. 21.
    R. J. Baxter,J. Stat. Phys. 28:1 (1982).Google Scholar
  22. 22.
    R. J. Baxter, inFundamental Problems in Statistical Mechanics V, E. G. D. Cohen, ed. (North-Holland, Amsterdam, 1980).Google Scholar
  23. 23.
    R. J. Baxter,Physica 106A:18 (1981).Google Scholar
  24. 24.
    D. A. Huse,Phys. Rev. Lett. 49:1121 (1982).Google Scholar
  25. 25.
    T. M. Apostol,Modular Functions and Dirichlet Series in Number Theory (Springer, New York, 1976).Google Scholar
  26. 26.
    G. E. Andrews,Proc. Natl. Acad. Sci. (U.S.A.) 78:5290 (1981).Google Scholar
  27. 27.
    I. Schur,Sitzungsber. Akad. Wissensch. Berlin Phys.-Math. Kl. p. 488 (1926).Google Scholar
  28. 28.
    C. R. Adams,Bull. Am. Math. Soc. 37:361 (1931).Google Scholar
  29. 29.
    G. E. Andrews, inTheory and Application of Special Functions, R. Askey, ed. (Academic, New York, 1975).Google Scholar
  30. 30.
    G. E. Andrews,Proc. Natl. Acad. Sci. (U.S.A.) 71:4082 (1974).Google Scholar
  31. 31.
    L. J. Slater,Proc. London Math. Soc. (2) 54:147 (1952).Google Scholar
  32. 32.
    L. J. Slater,Generalized Hypergeometric Functions (Cambridge University Press, Cambridge, 1966).Google Scholar
  33. 33.
    G. N. Watson,J. London Math. Soc. 4:4 (1929).Google Scholar
  34. 34.
    B. J. Birch,Math. Proc. Cambridge Philos. Soc. 78:73 (1975).Google Scholar
  35. 35.
    L. J. Rogers,Proc. London Math. Soc. (2),19:387 (1921).Google Scholar
  36. 36.
    H. B. C. Darling,Proc. London Math. Soc. (2) 19:350 (1921).Google Scholar
  37. 37.
    L. J. Mordell,Proc. London Math. Soc. (2) 20:408 (1922).Google Scholar
  38. 38.
    G. N. Watson,J. Indian Math. Soc. 20:57 (1933).Google Scholar
  39. 39.
    L. J. Rogers,Proc. London Math. Soc. 25:318 (1894).Google Scholar
  40. 40.
    S. Ramanujan,Proc. Cambridge Philos. Soc. 19:214 (1919).Google Scholar
  41. 41.
    D. M. Bressoud,J. London Math. Soc. (2) 16:9 (1977).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • George E. Andrews
    • 1
  • R. J. Baxter
    • 2
  • P. J. Forrester
    • 2
  1. 1.Department of Mathematics, McAllister BuildingPennsylvania State UniversityUniversity Park
  2. 2.Research School of Physical SciencesThe Australian National UniversityCanberraAustralia

Personalised recommendations