Advertisement

Journal of Statistical Physics

, Volume 61, Issue 5–6, pp 1257–1281 | Cite as

Fluctuation-induced couplings between defect lines or particle chains

  • Thomas C. Halsey
  • Will Toor
Articles

Abstract

One-dimensional structures such as defect lines or chains of dipolar particles are generally subject to strong Landau-Peierls thermal fluctuations. Coupling between these fluctuations in parallel lines may lead to an attractive force, analogous to the London force, or to a repulsive force of entropic origin. We analyze these forces for chains of electric dipoles and for flux lines in isotropic superconductors. In the first case the force is attractive, and can significantly change the Hamaker constant, which governs the attraction between colloidal particles. In the second case, over much of the magnetic field-temperature phase diagram the force is repulsive, and dominates over the direct repulsive interaction between flux lines.

Key words

Electrorheology flux lattice van der Waals forces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. L. Fetter and P. C. Hohenberg, inSuperconductivity, R. D. Parks, ed. (Marcel Dekker, New York, 1969), pp. 817ff.Google Scholar
  2. 2.
    B. I. Halperin, inPhysics of Low-Dimensional Systems, Y. Nagaoka and S. Hikami, eds. (Publication Office, Progress in Theoretical Physics, Kyoto, 1979).Google Scholar
  3. 3.
    P. G. de Gennes,Physics of Liquid Crystals (Oxford University Press, New York, 1974).Google Scholar
  4. 4.
    P. G. de Gennes and J. Matricon,Rev. Mod. Phys. 36:43 (1964); A. L. Fetter, P. C. Hohenberg, and P. Pincus,Phys. Rev. 147:140 (1966).Google Scholar
  5. 5.
    R. E. Rosenweig,Ferrohydrodynamics (Cambridge University Press, Cambridge, 1985); G. Helgesen, A. T. Skjeltorp, P. M. Mors, R. Botet, and R. Jullien,Phys. Rev. Lett. 61:1736 (1988).Google Scholar
  6. 6.
    A. P. Gast and C. F. Zukoski,Adv. Colloid Interface Sci. 30:153 (1989).Google Scholar
  7. 7.
    E. M. Lifshitz and L. P. Pitaevskii,Statistical Physics (Pergamon, Oxford, 1980), pp. 432ff.Google Scholar
  8. 8.
    D. R. Nelson,Phys. Rev. Lett. 60:1973 (1988); D. R. Nelson and H. S. Seung,Phys. Rev. B 39:9153 (1989); D. R. Nelson,J. Stat. Phys. 57:511 (1989).Google Scholar
  9. 9.
    P. L. Gammel, L. F. Schneemeyer, J. V. Waszczak, and D. J. Bishop,Phys. Rev. Lett. 61:1666 (1988).Google Scholar
  10. 10.
    A. I. Larkin,Zh. Eksp. Teor. Fiz. 58:1466 (1970).Google Scholar
  11. 11.
    M. P. A. Fisher,Phys. Rev. Lett. 62:1415 (1989); D. S. Fisher, M. P. A. Fisher, and D. A. Huse, to be published.Google Scholar
  12. 12.
    F. London,Z. Phys. Chem. B 11:222 (1930); I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevski,Adv. Phys. 10:165 (1961).Google Scholar
  13. 13.
    W. H. Keesom,Phys. Z. 22:129 (1921); J. Mahanty and B. W. Ninham,Dispersion Forces (Academic Press, San Francisco, 1976), pp. 1–33.Google Scholar
  14. 14.
    W. Helfrich,Z. Naturforsch. A 33:305 (1978); S. N. Coppersmith, D. S. Fisher, B. I. Halperin, P. A. Lee, and W. F. Brinkman,Phys. Rev. Lett. 46:549 (1981).Google Scholar
  15. 15.
    G. F. Carrier, M. Krook, and C. E. Pearson,Functions of a Complex Variable (McGraw-Hill, New York, 1966), pp. 220ff.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Thomas C. Halsey
    • 1
  • Will Toor
    • 2
  1. 1.Department of PhysicsBoston UniversityBoston
  2. 2.James Franck Institute and Department of PhysicsUniversity of ChicagoChicago

Personalised recommendations