Journal of Chemical Ecology

, Volume 15, Issue 8, pp 2177–2189 | Cite as

Cyanoglycoside gynocardin fromAcraea horta (L.) (Lepidoptera: Acraeinae)

Possible implications for evolution of acraeine host choice
  • David Raubenheimer
Article

Abstract

All stages in the life cycle ofAcraea horta (L.) (Lepidoptera: Acraeinae) were found to release hydrogen cyanide (HCN) from their crushed tissues, and the source of cyanogenesis was present in the hemolymph of adults and larvae. Comparison with standards on thin-layer chromatograms (TLC) revealed the presence in adults of gynocardin, a cyclopentenyl cyanoglycoside also produced by the larval food plant,Kiggelaria africana L. (Flacourtiaceae). Analysis of adults reared on plant species (Passifloraceae) containing gynocardin and/or other cyanoglycosides suggested selective uptake of gynocardin by the larvae. This is the first demonstration of a cyanoglycoside, other than the acyclic linamarin and lotaustralin, occurring in Lepidoptera and the first evidence for the storage byAcraea butterflies of a plant-produced allelochemical. Possible implications for the understanding of the evolution of acraeine host choice are discussed.

Key words

Acraea horta Lepidoptera Acraeinae cyclopentenyl cyanoglycoside gynocardin Kiggelaria africana sequestration evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackery, P.R. 1987. Diversity and phantom competition in African acraeine butterflies.Biol. J. Linn. Soc. 30:291–297.Google Scholar
  2. Ackery, P.R. 1988. Hostplants and classification: A review of nymphalid butterflies.Biol. J. Linn. Soc. 33:95–203.Google Scholar
  3. Bernays, E.A., andChapman, R.F. 1978. Plant chemistry and acridoid feeding behaviour, pp. 99–141,in J.B. Harborne (ed.). Biochemical Aspects of Plant and Animal Coevolution. Academic Press, New York.Google Scholar
  4. Brower, L.P., andBrower, J.V.Z. 1964. Birds, butterflies and plant poisons: A study in ecological chemistry.Zoologica (N.Y.) 49:137–159.Google Scholar
  5. Conn, E.E. 1979. Cyanide and cyanogenic glycosides, pp. 387–412,in G.A. Rosenthal, and D.H. Janzen (eds.). Herbivores, their Interaction with Secondary Plant Metabolites. Academic Press, New York.Google Scholar
  6. Conn, E.E. 1981. Biosynthesis of cyanogenic glycosides, pp. 183–196,in B. Vennesland, E.E. Conn, C.J. Knowles, J. Westley, and F. Wissing (eds.). Cyanide in Biology. Academic Press, London.Google Scholar
  7. Davis, R.H., andNahrstedt, A. 1979. Linamarin and lotaustralin as the source of cyanide inZygaena filipendulae L. (Lepidoptera).Comp. Biochem. Physiol. 64B:395–397.Google Scholar
  8. Davis, R.H., andNahrstedt, A. 1982. Occurrence and variation of the cyanogenic glucosides linamarin and lotaustralin in species of the Zygaenidae (Insecta: Lepidoptera).Comp. Biochem. Physiol. 716:329–332.Google Scholar
  9. Davis, R.H., andNahrstedt, A. 1985. Cyanogenesis in insects, pp. 635–654,in G.A. Kerkut and L.I. Gilbert (eds.). Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. II. Pergamon Press, Oxford.Google Scholar
  10. Ehrlich, P.R., andRaven, P.H. 1965. Butterflies and plants: A study in coevolution.Evolution 18:586–608.Google Scholar
  11. Gibbs, R.D. 1974. Chemotaxonomy of Flowering Plants. Vol. I. McGill-Queens University Press, Montreal.Google Scholar
  12. Jones, D.A., Parsons, K., andRothschild, M. 1962. Release of hydrocyanic acid from crushed tissues of all stages in the life cycle of species of the Zygaenidae (Lepidoptera).Nature 193:52–53.Google Scholar
  13. Nahrstedt, A., andDavis, R.H. 1981. The occurrence of the cyanoglucosides linamarin and lotaustralin inAcraea andHeliconius butterflies.Comp. Biochem. Physiol. 68B:575–577.Google Scholar
  14. Nahrstedt, A., andDavis, R.H. 1983. Occurrence, variation and biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in species of theHeliconiini (Insecta: Lepidoptera).Comp. Biochem. Physiol. 75B:65–73.Google Scholar
  15. Nahrstedt, A., andDavis, R.H. 1986. Uptake of linamarin and lotaustralin from their foodplant by larvae ofZygaena trifolii.Photochemistry 25(10):2299–2302.Google Scholar
  16. Nahrstedt, A., Norbert, E., andZinmeister, H. 1981. Methods of liberating and estimating hydrocyanic acid from cyanogenic plant material, pp. 461–471,in B. Vennesland, E.E. Conn, C.J. Knowles, J. Westley, and F. Wissing (eds.). Cyanide in Biology. Academic Press, London.Google Scholar
  17. Owen, D.F. (1970) Mimetic polymorphism and the palatability spectrum.Oikos 21:333–336.Google Scholar
  18. Owen, D.F., andChanter, D.O. 1969. Population biology of tropical African butterflies. Sex ratio and genetic variation inAcraea encedon.J. ZooL., London 157:345–374.Google Scholar
  19. Pennington, K.M. 1978. Acraeidaein Butterflies of Southern Africa. C.G.C. Dickson and D.M. Kroon (eds.). A.D. Donker, Johannesburg.Google Scholar
  20. Pierre, J. 1984. Systématique Evolutive, Cladistique et Mimetisme chez les Lepidoptères du genreAcraea (Nymphalidae). Unpublished PhD thesis. University of Paris.Google Scholar
  21. Raubenheimer, D. 1987. Cyanogenesis and the feeding preference ofAcraea horta (L.) (Lepidoptera: Acraeinae). Unpublished MSc thesis. University of Cape Town.Google Scholar
  22. Raubenheimer, D., andElsworth, J.F. 1988. Gynocardin from the leaves ofKiggelaria africana.J. Nat. Prod. 51(4):779.Google Scholar
  23. Rothschild, M. 1971. Speculations about mimicry with Henry Ford. pp. 202–223,in E.R. Creed (eds.). Ecological Genetics and Evolution. Blackwell Scientific Publications, Oxford.Google Scholar
  24. Rothschild, M. 1972. Secondary plant substances and warning colouration in insects.Symp. R. Entomol. Soc. London 6:59–83.Google Scholar
  25. Seigler, D.S. 1975. Isolation and characterisation of naturally occurring cyanogenic compounds.Phytochemistry 14:9–29.Google Scholar
  26. Smiley, J.T. 1985. Are chemical barriers necessary for evolution of butterfly-plant associations?Oecologia (Berlin) 65:580–583.Google Scholar
  27. Spencer, K.C., andSeigler, D.S. 1982. Tetraphyllin B and epi-tetraphyllin B fromAdenia glauca Schinz.Onderstepoort J. Vet. Res. 49:137–138.Google Scholar
  28. Steyn, D.G. 1934. Toxicology of Plants in South Africa. South African Central News Agency Ltd. Cape Town.Google Scholar
  29. Tantisewie, B., Ruijgrok, H.W.L., andHegnauer, R. 1969. Die Verbreitung der Blausaure bei den Kormophyten.Pharm. Weekblad 104:1341–1355.Google Scholar
  30. Von Euw, J., Fishelson, L., Parsons, J.A., Reichstein, T., andRothschild, M. 1967. Cardenolides (heart poisons) in a grasshopper feeding on milkweeds.Nature 214:35–39.Google Scholar
  31. Wiklund, C. 1975. The evolutionary relationship between adult oviposition preferences and larval host plant range inPapilio machaon.Oecologia 18:185–197.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • David Raubenheimer
    • 1
  1. 1.Department of ZoologyUniversity of Cape TownCape TownSouth Africa

Personalised recommendations