Journal of Statistical Physics

, Volume 22, Issue 6, pp 685–708 | Cite as

Hard-particle fluids. I. General scaled-particle-like descriptions

  • Boris Barboy
  • William M. Gelbart
Articles

Abstract

The Kirkwood-Salsburg equation for the many-particle distribution function is generalized to mixtures of anisotropic particles which can form ordered (e.g., liquid crystal or solid) phases. We extend similarly various statements of the “zero-separation” theorem. This allows us to obtain the small- and large-“ scaled ” particle limits in which a single particle is scaled to zero and infinite size, respectively. Simple interpolation between the corresponding solutions to the Kirkwood-Salsburg equation leads directly to the generalized scaled particle theory (SPT). Distribution functions as well as thermodynamic properties are considered. As special cases we treat first the single-component, hard-sphere system in its disordered and ordered states; an additional (gas ⇔ liquid) phase transition fails to appear when attractions are added. We then consider mixtures of particles, including those which interact via nonadditive hard cores. The SPT relations describing order states and isotropic phases of mixtures ofdifferently shaped particles are found to violate certain of the Maxwell relations. This thermodynamic inconsistency, inherent in the SPT because of its having afforded special status to a single particle, is absent altogether in the alternative description of hard-particle fluids which is presented in an accompanying paper.

Key words

Kirkwood-Salsburg equation zero-separation theorem scaled particle theory distribution functions equations of state hard-core particles nonadditive pair potential thermodynamic inconsistency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. (a)
    M. A. Cotter,J. Chem. Phys. 66:1098 (1977);Google Scholar
  2. 1. (b)
    M. A. Cotter, inProceedings of the NATO Advanced Study Institute on “ The Molecular Physics of Liquid Crystals,” G. W. Gray and G. R. Luckhurst, eds. (Plenum, New York, 1978).Google Scholar
  3. 2. (a)
    W. M. Gelbart and B. A. Baron,J. Chem. Phys. 66:207 (1977);Google Scholar
  4. 2. (b)
    W. M. Gelbart and A. Gelbart,Mol. Phys. 33:1387 (1977);Google Scholar
  5. 2. (c)
    B. A. Baron and W. M. Gelbart,J. Chem. Phys. 67:5795 (1977).Google Scholar
  6. 3.
    A. Wulf,J. Chem. Phys. 67:2254 (1977).Google Scholar
  7. 4. (a)
    H. Reiss, H. L. Frisch, and J. L. Lebowitz,J. Chem. Phys. 31:369 (1959); H. Reiss, inStatistical Mechanics and Statistical Methods in Theory and Application, U. Landman, ed. (Plenum, New York, 1977);Google Scholar
  8. 4. (b)
    E. Helfand, H. Reiss, and H. L. Frisch,J. Chem. Phys. 33:1379 (1960).Google Scholar
  9. 5.
    M. A. Cotter, inProceedings of the NATO Advanced Study Institute on “The Molecular Physics of Liquid Crystals,” G. W. Gray and G. R. Luckhurst, eds. (Plenum, New York, 1978).Google Scholar
  10. 6.
    G. Lasher,J. Chem. Phys. 53:4141 (1970).Google Scholar
  11. 7.
    R. M. Gibbons,Mol. Phys. 17:81 (1969).Google Scholar
  12. 8.
    B. Barboy and W. M. Gelbart,J. Chem. Phys. 71:3053 (1979).Google Scholar
  13. 9.
    W. M. Gelbart and B. Barboy,Mol. Cry st. Liq. Cryst. 55: 209 (1979); A van der Wools picture of the isotropic-nematic liquid crystal phase transition, preprint.Google Scholar
  14. 10.
    T. L. Hill,Statistical Mechanics (McGraw-Hill, New York, 1956), p. 234.Google Scholar
  15. 11. (a)
    M. A. Cotter and D. E. Martire,J. Chem. Phys. 53:4500 (1970);Google Scholar
  16. 11. (b)
    G. Morriss and E. Smith,Mol. Phys. 36:1825 (1978).Google Scholar
  17. 12. (a)
    B. Barboy and R. Tenne,Mol. Phys. 31:1749 (1976);Google Scholar
  18. 12. (b)
    B. Barboy and R. Tenne,Mol. Phys. 33:331 (1977).Google Scholar
  19. 13.
    T. Kihara,Rev. Mod. Phys. 25:831 (1953);Adv. Chem. Phys. 5:147 (1963).Google Scholar
  20. 14.
    L. Onsager,Ann. N.Y. Acad. Sci. 51:627 (1949).Google Scholar
  21. 15.
    M. A. Cotter,Phys. Rev. A 10:625 (1974).Google Scholar
  22. 16.
    E. Bergmann,Mol. Phys. 32:237 (1976); R. Tenne and E. Bergmann,Phys. Rev. A 17:2036 (1978); E. Bergmann and R. Tenne,Chem. Phys. Lett. 56:310 (1978).Google Scholar
  23. 17.
    J. K. Percus and G. J. Yevick,Phys. Rev. 110:1 (1958); E. Thiele,J. Chem. Phys. 39: 474 (1963); M. S. Wertheim,Phys. Rev. Lett. 10:321 (1963).Google Scholar
  24. 18.
    E. W. Grundke and D. Henderson,Mol. Phys. 24:269 (1972).Google Scholar
  25. 19.
    J. S. Rowlinson,Physics of Simple Liquids, H. N. V. Temperlyet al., eds. (Eisevier, Amsterdam, 1968), Chapter 3, pp. 68–69.Google Scholar
  26. 20.
    B. Barboy and R. Tenne,Chem. Phys. 38:369 (1979).Google Scholar
  27. 21.
    J. L. Lebowitz, E. Helfand, and E. Praestgaard,J. Chem. Phys. 45:774 (1965).Google Scholar
  28. 22.
    R. M. Gibbons,Mol. Phys. 18:809 (1970).Google Scholar
  29. 23.
    W. G. Hoover and J. C. Poirier,J. Chem. Phys. 37:1041 (1962).Google Scholar
  30. 24.
    E. Meeron and A. J. F. Siegert,J. Chem. Phys. 48:3139 (1968).Google Scholar
  31. 25.
    D. Henderson and E. W. Grundke,Mol. Phys. 24:669 (1972).Google Scholar
  32. 26.
    J. S. Rowlinson,Mol. Phys. 10:533 (1966).Google Scholar
  33. 27.
    J. A. Devore and J. E. Mayer,J. Chem. Phys. 70: 1821 (1979).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • Boris Barboy
    • 1
  • William M. Gelbart
    • 1
    • 2
  1. 1.Department of ChemistryUniversity of CaliforniaLos Angeles
  2. 2.Camille and Henry Dreyfus Foundation Teacher-ScholarUSA

Personalised recommendations