Journal of Statistical Physics

, Volume 60, Issue 1–2, pp 245–262 | Cite as

Amplitude death in an array of limit-cycle oscillators

  • Renato E. Mirollo
  • Steven H. Strogatz


We analyze a large system of limit-cycle oscillators with mean-field coupling and randomly distributed natural frequencies. We prove that when the coupling is sufficiently strong and the distribution of frequencies has sufficiently large variance, the system undergoes “amplitude death”-the oscillators pull each other off their limit cycles and into the origin, which in this case is astable equilibrium point for the coupled system. We determine the region in couplingvariance space for which amplitude death is stable, and present the first proof that the infinite system provides an accurate picture of amplitude death in the large but finite system.

Key words

Nonlinear oscillator bifurcation phase transition mean-field model self-synchronization collective phenomena 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. S. Wang and H. G. Winful,Appl. Phys. Lett. 52:1774 (1988);53:1894 (1988).Google Scholar
  2. 2.
    P. Hadley, M. R. Beasley, and K. Wiesenfeld,Phys. Rev. B 38:8712 (1988);Appl. Phys. Lett. 52:1619 (1988).Google Scholar
  3. 3.
    J. Benford, H. Sze, W. Woo, R. R. Smith, and B. Harteneck,Phys. Rev. Lett. 62:969 (1989).Google Scholar
  4. 4.
    A. T. Winfree,J. Theor. Biol. 16:15 (1967).Google Scholar
  5. 5.
    A. T. Winfree,The Geometry of Biological Time (Springer-Verlag, New York, 1980);When Time Breaks Down: The Three-Dimensional Dynamics of Electrochemical Waves and Cardiac Arrhythmias (Princeton University Press, Princeton, New Jersey, 1987).Google Scholar
  6. 6.
    L. Glass and M. C. Mackey,From Clocks to Chaos: The Rhythms of Life (Princeton University Press, Princeton, New Jersey, 1988).Google Scholar
  7. 7.
    J. Grasman and M. J. W. Jansen,J. Math. Biol. 7:171 (1979).Google Scholar
  8. 8.
    D. C. Michaels, E. P. Matyas, and J. Jalife,Circ. Res. 61:704 (1987); J. Jalife,J. Physiol. 356:221 (1984).Google Scholar
  9. 9.
    T. Pavlidis,Biological Oscillators: Their Mathematical Analysis (Academic Press, New York, 1973).Google Scholar
  10. 10.
    A. H. Cohen, P. J. Holmes, and R. H. Rand,J. Math. Biol. 13:345 (1982).Google Scholar
  11. 11.
    N. Kopell, inNeural Control of Rhythmic Movement in Vertebrates, A. H. Cohen, S. Rossignol, and S. Grillner, eds. (Wiley, New York, 1988); N. Kopell and G. B. Ermentrout,Commun. Pure Appl. Math. 39:623 (1986).Google Scholar
  12. 12.
    G. B. Ermentrout and N. Kopell,SIAM J. Math. Anal. 15:215 (1984).Google Scholar
  13. 13.
    A. Sherman, J. Rinzel, and J. Keizer,Biophys. J. 54:411 (1988).Google Scholar
  14. 14.
    Y. Kuramoto and I. Nishikawa,J. Stat. Phys. 49:569 (1987).Google Scholar
  15. 15.
    H. Sakaguchi, S. Shinomoto, and Y. Kuramoto,Prog. Theor. Phys. 77:1005 (1987);79:1069 (1988).Google Scholar
  16. 16.
    H. Daido,Phys. Rev. Lett. 61:231 (1988).Google Scholar
  17. 17.
    S. H. Strogatz and R. E. Mirollo,J. Phys. A 21:L699 (1988);Physica D 31:143 (1988).Google Scholar
  18. 18.
    Y. Aizawa,Prog. Theor. Phys. 56:703 (1976).Google Scholar
  19. 19.
    Y. Yamaguchi and H. Shimizu,Physica D 11:212 (1984).Google Scholar
  20. 20.
    M. Ohsuga, Y. Yamaguchi, and H. Shimizu,Biol. Cybernet. 51:325 (1985).Google Scholar
  21. 21.
    K. Bar-Eli,Physica D 14:242 (1985).Google Scholar
  22. 22.
    G. B. Ermentrout, inNonlinear Oscillations in Biology and Chemistry, H. Othmer, ed. (Springer, New York, 1986).Google Scholar
  23. 23.
    G. B. Ermentrout and W. C. Troy,SIAM J. Appl. Math. 46:359 (1986).Google Scholar
  24. 24.
    D. Aronson, G. B. Ermentrout, and N. Kopell,Physica D, in press.Google Scholar
  25. 25.
    G. B. Ermentrout,Physica D, in press.Google Scholar
  26. 26.
    M. Shiino and M. Frankowicz,Phys. Lett. A 136:103 (1989).Google Scholar
  27. 27.
    H. Sakuguchi,Prog. Theor. Phys. 80:743 (1988).Google Scholar
  28. 28.
    L. L. Bonilla, J. M. Casado, and M. Morillo,J. Stat. Phys. 48:571 (1987); L. L. Bonilla,Phys. Rev. Lett. 60:1398 (1988).Google Scholar
  29. 29.
    M. Shiino,Phys. Lett. A 111:396 (1985).Google Scholar
  30. 30.
    G. B. Ermentrout and N. Kopell,SIAM J. Appl. Math. 50:125 (1990).Google Scholar
  31. 31.
    H. Haken,Synergetics (Springer, Berlin, 1978).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Renato E. Mirollo
    • 1
  • Steven H. Strogatz
    • 2
  1. 1.Department of MathematicsBoston CollegeChestnut Hill
  2. 2.Department of MathematicsMassachusetts Institute of TechnologyCambridge

Personalised recommendations