Skip to main content

Advertisement

Log in

Potentials for exploiting allelopathy to enhance crop production

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Strategies for utilizing allelopathy as an aid in crop production include both avoidance and application protocols. There are immediate opportunities for management of weed and crop residues, tillage practices, and crop sequences to minimize crop losses from allelopathy and also to use allelopathic crops for weed control. Varieties of grain and forage sorghums (Sorghum Spp.), sunflower (Helianthus annuus L.), oats (Avena sativa L.), wheat (Triticum sativum L.),rye (Secale cereale L.), and others may provide weed control and in some instances crop stimulation from their residues. Our four-year field study with cultivated sunflower resulted in no differences in weed biomass between plots with and without herbicide (EPTC) applications. Strip cropping that included sorghum showed that in the subsequent year weed density and biomass were significantly lower in the previous-year sorghum than in soybean strips. Possibilities exist for modification of crop plant metabolism to alter production of allelochemicals. Allelochemical-environmental interactions must be considered in efforts to benefit from allelopathy. Under greenhouse conditions, joint application of low levels of atrazine, trifluralin, alachlor, or cinmethylin with a phenolic allelochemical showed that these two categories of inhibitors acted in concert to reduce plant growth. Allelochemicals may also be adapted as yield stimulants or environmentally sound herbicides, such as cinmethylin and methoxyphenone. Isolation of bialophos, tentoxin, and others shows that bacteria and fungi are good sources of biologically active compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, I.C. 1984. From my view.Soybean News 35(1):3.

    Google Scholar 

  • Barnes, J.P., andPutnam, A.R. 1983. Rye residues contribute weed suppression in no-tillage cropping systems.J. Chem. Ecol. 9:1045–1057.

    Google Scholar 

  • Barnes, J.P., Putnam, A.R., andBurke, B.A. 1986. Allelopathic activity of rye (Secale cereale L.), pp. 271–286,in A.R. Putnam and C.S. Tang (eds.). The Science of Allelopathy. John Wiley & Sons, New York.

    Google Scholar 

  • Brosten, D. 1987. Root protection.Agrichem. Age 31(3):11, 20.

    Google Scholar 

  • Burke, B.A. 1987. Allelopathy: A biotechnological-agrochemical approach.Am. Chem. Soc. Symp. Ser. 330:147–155.

    Google Scholar 

  • Chandler, J.M. 1985. Economics of weed control in crops.Am. Chem. Soc. Symp. Ser. 268:9–20.

    Google Scholar 

  • Chang, C.F., Suzuki, A., Kumai, S., andTamura, S. 1969. Chemical studies on “clover sickness.” Part II. Biological functions of isoflavonoids and their related compounds.Agric. Biol. Chem. 33:398–408.

    Google Scholar 

  • Chou, C.H. 1986. The role of allelopathy in subtropical agroecosystems of Taiwan, pp. 57–73in A.R. Putnam and C.S. Tang (eds.). The Science of Allelopathy. John Wiley & Sons, New York.

    Google Scholar 

  • Chou, C.H. 1987. Allelopathy in subtropical vegetation and soils in Taiwan.Am. Chem. Soc. Symp. Ser. 330:102–117.

    Google Scholar 

  • Colton, C.E., andEinhellig, F.A. 1980. Allelopathic mechanisms of velvetleaf (Abutilon theophrastic Medic., Malvaceae) on soybean.Am. J. Bot. 67:1407–1413.

    Google Scholar 

  • Connick, W.J., Jr., Bradow, J.M., Legendre, M.G., Vail, S.L., andMenges, R.M. 1987. Identification of volatile allelochemicals fromAmaranthus palmeri S. Wats.J. Chem. Ecol. 13:463–472.

    Google Scholar 

  • Cutler, H.G. 1984. Biologically active natural products from fungi: Templates for tomorrow's pesticides.Am. Chem. Soc. Symp. Ser. 257:153–170.

    Google Scholar 

  • Cutler, H.G. 1985. A personal perspective on biologically active natural products from fungi.Proc. Plant Growth Reg. Soc. Am. 12:160–174.

    Google Scholar 

  • Cutler, H.G. 1987. Japanese contributions to the development of allelochemicals.Am. Chem. Soc. Symp. Ser. 330:23–38.

    Google Scholar 

  • Duke, S.O. 1986a. Naturally occurring chemical compounds as herbicides.Rev. Weed Sci. 2:15–44.

    Google Scholar 

  • Duke, S.O. 1986b. Microbially produced phytotoxins as herbicides—a perspective, pp. 287–304,in A.R. Putnam and C.S. Tang (eds.). The Science of Allelopathy. John Wiley & Sons, New York.

    Google Scholar 

  • Duke, S.O., andLydon, J. 1987. Herbicides from natural compounds.Weed Technol. 1(2):122–128.

    Google Scholar 

  • Einhellig, F.A. 1985. Effects of allelopathic chemicals on crop productivity.Am. Chem. Soc. Symp. Ser. 276:109–130.

    Google Scholar 

  • Einhellig, F.A. 1986. Mechanisms and modes of action of allelochemicals, pp. 171–188,in A.R. Putnam and C.S. Tang (eds.). The Science of Allelopathy. John Wiley & Sons, New York.

    Google Scholar 

  • Einhellig, F.A. 1987. Interactions among allelochemicals and other stress factors of the plant environment.Am. Chem. Soc. Symp. Ser. 330:343–357.

    Google Scholar 

  • Einhellig, F.A., andSchon, M.K. 1982. Noncompetitive effects ofKochia scoparia on grain sorghum and soybeans.Can. J. Bot. 60:2923–2930.

    Google Scholar 

  • Einhellig, F.A., Muth, M. Stille, andSchon, M.K. 1985. Effects of allelochemicals on plantwater relationships.Am. Chem. Soc. Symp. Ser. 268:170–195.

    Google Scholar 

  • Fay, P.K., andDuke, W.B. 1977. An assessment of allelopathic potential inAvena germ plasm.Weed Sci. 25:224–228.

    Google Scholar 

  • Forney, R.D., Foy, C.L., andWolf, D.D. 1985. Weed suppression in no-till alfalfa (Medicago sativa) by prior cropping of summer-annual forage grasses.Weed Sci. 33:490–497.

    Google Scholar 

  • Grodzinsky, A.M. 1987. Allelopathy in the Soviet Union.Am. Chem. Soc. Symp. Ser. 330:39–43.

    Google Scholar 

  • Hamm, J.H. 1984. Effects of oats and grain sorghum on combinations of atrazine, trifluralin, ferulic acid, and other allelochemical stress. MA Thesis. University of South Dakota, Vermillion. 60 pp.

    Google Scholar 

  • Harrison, H.F., andPeterson, J.K. 1986. Allelopathic effects of sweet potatoes (Ipomoea batatas) on yellow nutsedge (Cyperus esculentus) and alfalfa (Medicago sativa).Weed Sci. 34:623–627.

    Google Scholar 

  • Hepperly, P.R., andDiaz, M. 1983. The allelopathic potential of pigeon peas in Puerto Rico.J. Agric. Univ. P.R. 67:453–463.

    Google Scholar 

  • Holmseni, T.W. 1984. Approaches to yield enhancement—commercial strategies.Proc. Plant Growth Reg. Soc. 11:224–228.

    Google Scholar 

  • Hopen, H.J., Montazer-Zouhoor, A., Wu, S., andRebeiz, C.A. 1985. Photodynamic (Laser) herbicides: A spinoff of the study of the chlorophyll biosynthetic pathway.Weeds Today 16(2):4–5.

    Google Scholar 

  • Jarvis, B.B., Pena, N.B., Rao, M.M., Comezoglu, N.S., Comezoglu, T.F., andMandava, N.B. 1985. Allelopathic agents fromParthenium hysterophorus andBaccharis megapotamica.Am. Chem. Soc. Symp. Ser. 268:149–159.

    Google Scholar 

  • Jung, J. 1985. Plant bioregulators: Overview, use, and development.Am. Chem. Soc. Symp. Ser. 276:95–107.

    Google Scholar 

  • Kanchan, S.D., andJayachandra 1979. Allelopathic effects ofParthenium hysterophorus L. III. Inhibitory effects of the weed residue.Plant Soil 53:37–47.

    Google Scholar 

  • Kanchan, S.D., andJayachandra 1980. Allelopathic effects ofParthenium hysterophorus L. IV. Identification of inhibitors.Plant Soil 55:67–75.

    Google Scholar 

  • Kobza, J., andEinhellig, F.A. 1987. The effects of ferulic acid on the mineral nutrition of grain sorghum.Plant Soil 98:99–109.

    Google Scholar 

  • Kumari, A., Kohli, R.K., andSaxena, D.B. 1985. Allelopathic effects ofParthenium hysterophorus L. leachates and extracts onBrassica campestris L.Ann. Biol. 1:189–196.

    Google Scholar 

  • Laughlin, R.G., Munyon, R.L., Ries, S.K., andWert, V.F. 1983. Growth enhancement of plants by femtomole doses of colloidally dispersed triacontanol.Science 219:1219–1220.

    Google Scholar 

  • Leather, G.R. 1983. Sunflowers (Helianthus annuus) are allelopathic to weeds.Weed Sci. 31:37–42.

    Google Scholar 

  • Leather, G.R. 1987. Weed control using allelopathic sunflowers and herbicide.Plant Soil 98:17–23.

    Google Scholar 

  • Lehle, F.R., andPutnam, A.R. 1982. Quantification of allelopathic potential of sorghum residues by novel indexing of Richards' function fitted to cumulative cress seed germination curves.Plant Physiol. 69:1212–1216.

    Google Scholar 

  • Lockerman, R.H., andPutnam, A.R. 1979. Evaluation of allelopathic cucumbers (Cucumis sativus) as an aid to weed control.Weed Sci. 27:54–57.

    Google Scholar 

  • Lynch, J.M. 1987. Allelopathy involving microorganism: Case histories from the United Kingdom.Am. Chem. Soc. Symp. Ser. 330:44–52.

    Google Scholar 

  • Maugh, T.H. 1981. New chemicals promise larger crops.Science 212:33–34.

    Google Scholar 

  • Maun, M.A. 1977. Suppressing effect of soybeans on barnyardgrass.Can. J. Plant Sci. 57:485–490.

    Google Scholar 

  • McCalla, T.M., andNorstadt, F.A. 1974. Toxicity problems in mulch tillage.Agric. Environ. 1:153–174.

    Google Scholar 

  • Menges, R.M. 1987. Allelopathic effects of Palmer Amaranth (Amaranthus palmeri) and other plant residues in soil.Weed Sci. 35:339–347.

    Google Scholar 

  • Miller, D.A. 1983. Allelopathic effects of alfalfa.J. Chem. Ecol. 9:1059–1072.

    Google Scholar 

  • Oleszek, W., andJurzysta, M. 1987. The allelopathic potential of alfalfa root medicagenic acid glycosides and their fate in soil environments.Plant and Soil 98:67–80.

    Google Scholar 

  • Otake, N. 1983. Recent progress in research on agricultural antibiotics in Japan, pp. 3–30,in N. Takahashi, H. Yoshioka, T. Misato, and S. Matsunaka (eds.). Pesticide Chemistry: Human Welfare and the Environment, Vol. 2, Natural Products. Pergamon Press, Oxford.

    Google Scholar 

  • Putnam, A.R., andDeFrank, J. 1983. Use of phytotoxic plant residues for selective weed control.Crop projection 2:173–181.

    Google Scholar 

  • Putnam, A.R., andDuke, W.B. 1974. Biological suppression of weeds: Evidence for allelopathy in accessions of cucumber.Science 185:370–372.

    Google Scholar 

  • Putnam, A.R., andWeston, L.A. 1986. Adverse impacts of allelopathy in agricultural systems, pp. 43–56,in A.R. Putnam and C.S. Tang (eds.). The Science of Allelopathy. John Wiley & Sons, New York.

    Google Scholar 

  • Putnam, A.R., DeFrank, J., andBarnes, J. P. 1983. Exploitation of allelopathy for weed control in annual and perennial cropping systems.J. Chem. Ecol. 9:1001–1010.

    Google Scholar 

  • Rice, E.L. 1984. Allelopathy, 2nd ed. Academic Press, Orlando, Florida, 422 pp.

    Google Scholar 

  • Shettel, N., andBalke, N.E. 1983. Plant growth response to several allelopathic chemicals.Weed Sci. 31:293–298.

    Google Scholar 

  • Shilling, D.G., Liebl, R.A., andWorsham, A.D. 1985. Rye (Secale cereale L.) and wheat (Triticum aestivum L.) mulch: The suppression of certain broadleaved weeds and the isolation and identification of phytotoxins.Am. Chem. Soc. Symp. Ser. 268:243–271.

    Google Scholar 

  • Sterling, T.M., andPutnam, A.R. 1987. Possible role of glandular trichome exudates in interference by velvetleaf (Abutilon theophrasti).Weed Sci. 35:308–314.

    Google Scholar 

  • Swain, T. 1977. Secondary compounds as protective agents.Annu. Rev. Plant Physiol. 28:479–501.

    Google Scholar 

  • Syamasundar, J., andMahadevappa, M. 1987. Biological control ofParthenium hysterophorus L. byCassia sericea Sw.—a study of interference.XIV Int. Bot. Congress Abstracts, Abst. 6-123b-4, p. 413.

  • Wegher, B.J. 1986. Interactions of allelochemical stress and herbicide stress on growth of sorghum and wheat. M.A. thesis, University of South Dakota, Vermillion, 60 pp.

    Google Scholar 

  • Weston, L.A., Burke, B.A., andPutnam, A.R. 1987. Isolation, characterization and activity of phytotoxic compounds from quackgrass[Agropyron repens (L.) Beauv.).J. Chem. Ecol. 13:403–421.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Einhellig, F.A., Leather, G.R. Potentials for exploiting allelopathy to enhance crop production. J Chem Ecol 14, 1829–1844 (1988). https://doi.org/10.1007/BF01013480

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01013480

Key words

Navigation