Advertisement

Journal of Statistical Physics

, Volume 36, Issue 5–6, pp 665–676 | Cite as

Transfer processes in fractal media

  • Alain Le Mehaute
Articles

Abstract

An irreversible process in fractal media involves coupling relation between the space and the time. The present note displays how the fractional derivation has to be introduced to describe this effect. As a result the law of the chemical diffusion to a fractal is given.

Key words

Irreversible process fractal fractional derivation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Villermaux,Génie de la réaction chimique. Conception et fonctionnement des réacteurs, Technique et Documentation (Lavoisier, Paris, 1982).Google Scholar
  2. 2.
    R. Aris,The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts (Clarendon press, Oxford, 1975).Google Scholar
  3. 3.
    J. J. Carberry,Applied Kinetics and Chemical Reaction Engineering (MacGraw-Hill, New York, 1976).Google Scholar
  4. 4.
    R. de Levie,Advances in Electrochemistry and Electrochemical Engineering, Vol. 6, P. Delahay and C. W. Tobias, eds. (Interscience, New York, 1967).Google Scholar
  5. 5.
    J. Newman, bibliography, Material and Molecular Research Division, Lawrence Berkeley Laboratory and Department of Chemical Engineering, University of California, Berkeley, California 94720.Google Scholar
  6. 6.
    P. Le Goff, Cinétique physique des réactions chimiques hétérogènes, in Techniques de l'ingénieur, Ref. J. 1210, 1967.Google Scholar
  7. 7.
    J. Newman and W. Tiedemann,Advances in Electrochemistry and Electrochemical Engineering, Vol. 11, H. Gericher and C. W. Tobias, eds. (Interscience, New York, 1977).Google Scholar
  8. 8.
    B. Mandelbrot,Les objects fractals (Flammarion, Paris, 1975);Fractal, Form, Chance and Dimension (Freeman, San Francisco, 1977);The Fractal Geometry of Nature (Freeman, San Francisco, 1983).Google Scholar
  9. 9.
    A. Le Mehaute and G. Crepy, in Salon de la Physique, Paris (1981);C. R. Acad. Sci. (Paris) 294:835–838 (1982).Google Scholar
  10. 10.
    P. Pfeifer and P. Avnir,J. Chem. Phys. 79(7):3558–3571 (1983).Google Scholar
  11. 12.
    I. Prigogine,Physique, temps et devenir (Masson, Paris, 1980).Google Scholar
  12. 13.
    R. Balescu,Equilibrium and Nonequilibrium Statistical Mechanics (Wiley-Interscience, New York, 1975).Google Scholar
  13. 14.
    I. Prigogine,Thermodynamique des phénomènes irréversibles (Dunod, Paris, 1947); G. de Groot,Thermodynamics of irreversible processes (Eisevier, New York, 1962).Google Scholar
  14. 15.
    A. Le Mehaute, A. de Guibert, M. Délaye, and C. Filippi, C.R. Acad, Sci. (Paris) 294:835–839 (1982); A. Le Mehaute and G. Crepy,Solid State Ionics 9/10=:17–30 (1983).Google Scholar
  15. 16.
    A. Blanc-Lapierre and B. Picinbono,Fonctions aléatoires (Masson, Paris, 1981); J. C. Gille, M. Pellegrin, and P. Decaulne,Théorie et techniques des asservissements (Dunod, Paris, 1956).Google Scholar
  16. 17.
    L. Schwartz,Théorie des distributions (Hermann, Paris, 1966).Google Scholar
  17. 18.
    L. Fruchter, “A propos du contenu fractal de la réponse viscoelastique,” D.E.A., Laboratoires de Marcoussis, internai report. Unpublished.Google Scholar
  18. 19.
    L. Fruchter and A. Le Mehaute, to be published.Google Scholar
  19. 20.
    J. Liouville,J. École Polytech. 13:71 (1832); J. M. Guelfan and G. E. Chilov,Les distributions (Dunod, Paris, 1962); K. O. Oldham and J. S. Spanier,The Fractional Calculus (Academic Press, New York, 1974); B. Ross.Fractional Calculus and Its Applications A. Ross Dold, A. Exkmann, and B. Exkmann, eds. (Springer-Verlag, Berlin, 1974).Google Scholar
  20. 21.
    R. Kopelman, P. W. Klymko, J. S. Newhouse and L. W. Anaker,Phys. Rev. 29:3747–3748 (1984).Google Scholar
  21. 22.
    P. Evesque,J. Phys. (Paris) 44:1217, 1224 (1983).Google Scholar
  22. 23.
    E. Von Schweilder,Ann. Phys. (Leipzig) 24:711–714 (1907).Google Scholar
  23. 24.
    A. Le Mehaute and G. Crepy,C. R. Acad. Sci. (Paris) 294:685 (1982); A. Le Mehaute and A. Dugast,J. Power Sources 9:359–364 (1983).Google Scholar
  24. 25.
    A. Le Mehaute, three experimental notes in preparation.Google Scholar
  25. 26.
    T. Hamaide, thesis, Lyon, 1983.Google Scholar
  26. 27.
    K. J. Laidler,Reaction Kinetics (Pergamon Press, New York, 1963).Google Scholar
  27. 28.
    K. S. Cole and R. H. Cole,J. Chem. Phys. 9:341–347 (1941).Google Scholar
  28. 29.
    Y. Adda and J. Philibert,La diffusion dans les solides (INSTN/Press Universitaire de France, 1966).Google Scholar
  29. 30.
    K. B. Oldham and J. Spanier,J. Electroanal. Chem. 26:31–10 (1970); K. B. Oldham,Anal. Chem. 44:196–201 (1972); M. Grenness and K. B. Oldham,Ann. Chem. 44:1121–1129 (1972); K. B. Oldham,Anal. Chem. 45:39–43 (1973).Google Scholar
  30. 31.
    R. L. Birke,Anal. Chem. 45:2292–2998 (1973).Google Scholar
  31. 32.
    A. Le Mehaute and G. Crepy, to be published.Google Scholar
  32. 33.
    A. Le Mehaute and G. Crepy,Solid State Ionics 9/10:17–30 (1983).Google Scholar
  33. 34.
    A. Le Mehaute, G. Crepy, G. Marcellin, and T. Hamaide, EUCHEM Conference on Solid State Chemistry and Electrochemistry, Oxford, March 1984.Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • Alain Le Mehaute
    • 1
  1. 1.Centre de Recherches de la Compagnie Générale d'Electricité, Division ElectrochimieLaboratoires de MarcoussisMarcoussisFrance

Personalised recommendations