Journal of Statistical Physics

, Volume 15, Issue 3, pp 233–253 | Cite as

Nonlinearity in cooperative systems-dynamical Bethe-Ising model

  • Yukio Saito
  • Ryogo Kubo


The dynamics of the short-range order as well as the long-range order in the nonlinear cooperative system is investigated specifically for a kinetic Ising model in the Bethe approximation. The phenomena of critical slowing down near the transition temperatureT c and anomalous fluctuation belowT c are directly related to the instability of the long-range order. The dynamics of the short-range order is essentially a fast mode and is noncritical. However, through the nonlinear coupling the short-range order is also influenced by the critical behavior of the long-range order.

Key words

Kinetic Ising model quasi-chemical approximation critical slowing down anomalous fluctuations far from equilibrium coupling between order parameters 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. D. Landau and E. M. Lifschitz,Statistical Physics, Pergamon, London (1968).Google Scholar
  2. 2.
    C. Domb and M. S. Green,Phase Transitions and Critical Phenomena, Academic, London (1972); M. E. Fisher,Rev. Mod. Phys. 46:587 (1974); K. G. Wilson and J. Kogut,Phys. Rep. 12C:76 (1974).Google Scholar
  3. 3.
    H. Haken,Rev. Mod. Phys. 47:67 (1975).Google Scholar
  4. 4.
    R. Kubo, K. Matsuo, and K. Kitahara,J. Stat. Phys. 9:51 (1973); M. Suzuki,Prog. Theor. Phys. 53:1657 (1975).Google Scholar
  5. 5.
    N. G. van Kampen,Can. J. Phys. 39:551 (1961); inFluctuation Phenomenon in Solids, R. E. Burgess, ed., Academic, New York, London (1965).Google Scholar
  6. 6.
    R. B. Griffiths, C. Y. Weng, and J. S. Langer,Phys. Rev. 149:301 (1966).Google Scholar
  7. 7.
    H. A. Bethe,Proc. Roy. Soc. A 150:552 (1935); R. Peierls,Proc. Camb. Phil. Soc. 32:477(1936).Google Scholar
  8. 8.
    R. H. Fowler and E. A. Guggenheim,Statistical Thermodynamics, Cambridge University Press, London (1939).Google Scholar
  9. 9.
    H. W. Huang,Phys. Rev. A 8:2553 (1973);Phys. Rev. Lett. 48A:395 (1974).Google Scholar
  10. 10.
    R. Kikuchi,Ann. Phys. (N.Y.) 11:306 (1960);Phys. Rev. 124:1682 (1961).Google Scholar
  11. 11.
    R. J. Glauber,J. Math. Phys. 4:294 (1963); M. Suzuki and R. Kubo,J. Phys. Soc. Japan 24:51 (1968).Google Scholar
  12. 12.
    Y. Takagi,J. Phys. Soc. Japan 4:99 (1949).Google Scholar
  13. 13.
    M. Suzuki,Int. J. Magn. 1:123 (1971); Z. Racz,Phys. Rev. B 13:263 (1976).Google Scholar
  14. 14.
    N. Ogita, A. Ueda, T. Matsubara, H. Matsuda, and F. Yonezawa, in “Proc. Intern. Conf. Statistical Mechanics, Kyoto, 1968,”J. Phys. Soc. Japan 26 (Suppl.):146 (1969); E. Stoll, K. Binder, and T. Schneider,Phys. Rev. B 8:3266 (1973).Google Scholar
  15. 15.
    K. Binder,Phys. Rev. B 8:3423 (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • Yukio Saito
    • 1
  • Ryogo Kubo
    • 1
  1. 1.Department of PhysicsUniversity of TokyoTokyoJapan

Personalised recommendations