Journal of Chemical Ecology

, Volume 13, Issue 11, pp 2115–2130 | Cite as

Digestion and absorption ofEucalyptus essential oils in greater glider (Petauroide svolans) and brushtail possum (Trichosurus vulpecula)

  • W. J. Foley
  • E. V. Lassak
  • J. Brophy


Measurements were made of the quantity and composition of the steam-volatile essential oils in gastrointestinal tract contents of greater gliders fedEucalyptus radiata foliage and brushtail possums fedE. melliodora foliage. In both species, there was less oil in the stomach contents than in an equivalent mass of foliage. Only minor losses of leaf oils occurred during mastication by greater gliders, and absorption from the stomach appeared to be the major reason for the difference in the oil content of ingested leaves and of stomach contents. The apparent digestibility of oils over the whole gut was 96–97 %, although oils from the cecum and feces of both species contained compounds not present in the original leaf oils. Absorption of oils before they reach the hindgut should reduce the severity of antimicrobial effects but may involve a metabolic cost to the animal in detoxification and excretion.

Key words

Folivores marsupials allelochemicals transformation detox-ification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akimov, Y.A., Harchenko, G.I., Krylova, A.P., andBelova, N.N. 1977. The antimicrobial effect of terpenes fromJuniperus sabina. L.Prikl. Biokhim, Mikrobiol. 13:185–188 (translation).Google Scholar
  2. Alexander, F., andChowdhury, A.K. 1958. Digestion in the rabbit's stomach.Br. J. Nutr. 12:65–73.Google Scholar
  3. Andrews, R.E., Parks, L.W., andSpence, K.D. 1980. Some effects of Douglas fir terpenes on certain microorganisms.Appl. Environ. Microbiol. 40:301–304.Google Scholar
  4. Betts, T.J. 1978. Koala acceptance ofEucalyptus globulus Labill. as food in relation to the proportion of sesquiterpenoids in the leaves, pp. 75–78,in T.J. Bergin (ed.). The Koala. Zoological Parks Board of NSW, Sydney.Google Scholar
  5. Bhattacharyva, P.K., andDhavalikar, R.S. 1965. Microbiological transformations of terpenes: Part V. Origin of 2-nonene-2,3-dicarboxylic acid anhydride in the fermentation of terpenoid hydrocarbons byAspergillus niger.Indian J. Biochem. 18:1084–1087.Google Scholar
  6. Brophy, J.J., Nelson, D., Goldsack, R.J., Lidoard, R.L., andMelley, O.P. 1979. Elemental compositions from low-resolution magnetic mass spectrometers.Lab. Prac. 28:615–619.Google Scholar
  7. Bryant, J.P., andKuropat, P.J. 1980. Selection of winter forage by subarctic browsing vertebrates: The role of plant chemistry.Annu. Rev. Ecol. Syst. 11:261–285.Google Scholar
  8. Cleland, J.B. 1946. Cystinuria. M.Sc. thesis, University of Adelaide, Australia.Google Scholar
  9. Cluff, L., Welch, B.L., Pederson, J.C., andBrotherson, J.D. 1982. The concentration of monoterpenoids in rumen ingesta of wild mule deer browsing on a big sagebrush winter range.J. Range Manage. 35:192–194.Google Scholar
  10. Cook, C.W., Stoddart, L.A., andHarris, L.E. 1952. Determining the digestibility and metabolizable energy of winter range plants by sheep.J. Anim. Sci. 11:578–590.Google Scholar
  11. Eberhard, I.H., Mcnamara, J., Pearse, R.J., andSouthwell, I.A. 1975. Ingestion and excretion ofEucalyptus punctata D.C. and its essential oil by the koalaPhascolarctos cinereus (Goldfuss).Aust. J. Zool. 23:169–179.Google Scholar
  12. Fleay, D. 1937. Observations on the koala in captivity. Successful breeding in Melbourne Zoo.Aust. Zool. 9:68–80.Google Scholar
  13. Foley, W.J. 1984. The utilization ofEucalyptus foliage by the greater glider (Petauroides volans) and the brushtail possum (Trichosurus vulpecula). PhD thesis, Univesity of New England, Armidale, New South Wales.Google Scholar
  14. Foley, W.J., andHume, I.D. 1987. Passage of digesta markers in two species of arboreal folivorous marsupials—the greater glider (Petauroides volans) and the brushtail possum (Trichosurus vulpecula).Physiol. Zool. In press.Google Scholar
  15. Forestry Commission in NSW 1965. Forest types in New South Wales. Research Note 17.Google Scholar
  16. Freeland, W.J., andJanzen, D.H. 1974. Strategies in herbivory by mammals: The role of plant secondary compounds.Am. Nat. 108:269–289.Google Scholar
  17. Freeland, W.J., andWinter, J.W. 1975. Evolutionary consequences of eating:Trichosurus vulpecula and the genusEucalyptus.J. Chem. Ecol. 1:439–455.Google Scholar
  18. Garnier, A., andGaiffe, M. 1967. Sur l'oxydation du myrcène, du 1-α-pinène, du β-pinène et du 1-α-phellandrene, par l'oxygène, catalysées par des complexes organométalliques.C.R. Acad. Sci. Paris 264:1065–1068.Google Scholar
  19. Gipps, J.M. 1980. Functional dental morphology in four Australian possums. BSc (Hons) thesis, Monash University, Melbourne, Victoria.Google Scholar
  20. Hinks, N.T., andBollinger, A. 1975a. Glucuronuria in a herbivorous marsupialTrichosurus vulpecula.Aust. J. Exp. Biol. Med. Sci. 35:37–46.Google Scholar
  21. Hinks, N.T., andBollinger, A. 1957b. Glucuronuria in marsupials.Aust. J. Sci. 19:288.Google Scholar
  22. Hughes, A. 1970. A modified receiver for heavier than water essential oils.Chem. Ind. (London) 48:1536.Google Scholar
  23. Igimi, H., Nishimura, M., Kodama, R., andIde, H. 1974. Studies on the metabolism ofd- limonene (p-mentha-1,8-diene). I. The absorption, distribution and excretion of d-limonene in rats.Xenobiotica 4:77–84.Google Scholar
  24. Joglekar, S.S., andDhavalikar, R.S. 1969. Microbial transformation of terpenoids. I. Identification of metabolites produced by a pseudomonad from citronellal and citral.Appl. Microbiol. 18:1084–1087.Google Scholar
  25. Kerle, J.A. 1984. Variation in the ecology ofTrichosurus: Its adaptive significance, pp. 115–128,in A.P. Smith and I.D. Hume (eds.). Possums and Gliders. Australian Mammal Society, Sydney.Google Scholar
  26. Ladiges, P.Y., Humphries, C.J., andBrooker, M.I.H. 1983. Cladistic relationships and biogeographic patterns in the peppermint group ofEucalyptus (informal subseries Amygdalininae, subgenusMonocalyptus) and the description of a new speciesE.willisii. Aust. J. Bot. 31:565–584.Google Scholar
  27. London, C.J. 1981. The microflora associated with the caecum of the koala (Phascolarctos cinereus). MSc. thesis, La Trobe University, Melbourne, Victoria.Google Scholar
  28. Marples, T.G. 1973. Studies on the marsupial gliderSchoinobates volans (Kerr). IV. Feeding biology.Aust. J. Zool. 21:213–216.Google Scholar
  29. Morrow, P.A., andFox, L.R. 1980. Effects of variation inEucalyptus essential oil yield on insect growth and grazing.Oecologia (Berlin) 45:209–219.Google Scholar
  30. Nagy, J.G., andTengerdy, R.P. 1968. Antibacterial action of essential oils ofArtemsia as an ecological factor. II. Antibacterial action of the volatile oils ofArtemisia tridentata (big sagebrush) on bacteria from the rumen of mule deer.Appl. Microbiol. 16:441–444.Google Scholar
  31. Nagy, J.H., Steinhoff, H.W., andWard, G.M. 1964. Effects of essential oils of sagebrush on deer rumen microbial function.J. Wildl. Manage. 28:785–790.Google Scholar
  32. Narjisse, H. 1981. Acceptability of big sagebrush to sheep and goats: Role of monoterpenes. MS thesis, Utah State University, Logan. 122 pp.Google Scholar
  33. Oh, H.K., Sakai, T., Jones, M.B., andLonghurst, W.M. 1967. Effect of various essential oils isolated from Douglas fir needles upon sheep and deer rumen microbial activity.Appl. Microbiol. 15:777–784.Google Scholar
  34. Oh, H.K., Jones, M.B., andLonghurst, W.M. 1968. Comparison of rumen microbial inhibition resulting from various essential oils isolated from relatively unpalatable plant species.Appl. Microbiol. 16:39–44.Google Scholar
  35. Pratt, A. 1937. The Call of the Koala. Robertson and Mullens, Melbourne, Victoria.Google Scholar
  36. Sadler, C.H.S. 1983.Eucalyptus foliage as a food source: The effects of low nutrient content and high secondary compound content on gut microbial digestion with special reference to essential oils. BSc (Hons) thesis, University of Edinburgh, U.K.Google Scholar
  37. Southwell, I.A. 1978. Essential oil content of koala food trees, pp. 62–74,in T.J. Bergin (ed.). The Koala. Zoological Parks Board of NSW, Sydney.Google Scholar
  38. Southwell, I.A., Flynn, T.M., andDegabriele, R. 1980. Metabolism of α- and β-pinene,p-cymeneand 1,8-cineole in the brushtail possum,Trichosurus vulpecula.Xenobiotica 10:17–23.Google Scholar
  39. Von Rudloff, E. 1975. Volatile leaf oil analysis in chemosystematic studies of North American conifers.Biochem. Syst. Ecol. 2:131–167.Google Scholar
  40. Welch, B.L., andMcarthur, E.D. 1979. Feasibility of improving big sagebrushArtemisia tridentata for use on mule deer winter ranges, pp. 451–473,in J.R. Gooding and O.K. Northington (eds.). Arid Land Plant Resources. International Center for Arid and Semi-Arid Land Studies, Texas Technical University, Lubbock, Texas.Google Scholar
  41. Welch, B.L., McArthur, E.D., andDavis, J.N. 1981. Differential preference of wintering mule deer for accessions of big sagebrush and for black sagebrush.J. Range Manage. 34:409–411.Google Scholar
  42. Welch, B.L., Narjisse, H., andMcArthur, E.D. 1982.Artemisia tridentata monoterpenoid effect on ruminant digestion and forage selection,in N.S. Margaris (ed.). Proceedings of the International Symposium of Aromatic Plants. Laboratory Ecology, University of Thessalonika, Greece.Google Scholar
  43. White, S.M., Welch, B.L., andFlinders, J.T. 1982. Monoterpenoid content of pygmy rabbit stomach ingesta.J. Range Manage. 35:107–109.Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • W. J. Foley
    • 1
  • E. V. Lassak
    • 2
  • J. Brophy
    • 3
  1. 1.Department of Biochemistry, Microbiology, and NutritionUniversity of New EnglandArmidaleAustralia
  2. 2.New South Wales Department of AgricultureBiological and Chemical Research InstituteRydalmereAustralia
  3. 3.School of ChemistryUniversity of New South WalesKensingtonAustralia

Personalised recommendations